240 research outputs found
Linear Response Theory and Optical Conductivity of Floquet Topological Insulators
Motivated by the quest for experimentally accessible dynamical probes of
Floquet topological insulators, we formulate the linear response theory of a
periodically driven system. We illustrate the applications of this formalism by
giving general expressions for optical conductivity of Floquet systems,
including its homodyne and heterodyne components and beyond. We obtain the
Floquet optical conductivity of specific driven models, including
two-dimensional Dirac material such as the surface of a topological insulator,
graphene, and the Haldane model irradiated with circularly or linearly
polarized laser, as well as semiconductor quantum well driven by an ac
potential. We obtain approximate analytical expressions and perform numerically
exact calculations of the Floquet optical conductivity in different scenarios
of the occupation of the Floquet bands, in particular, the diagonal Floquet
distribution and the distribution obtained after a quench. We comment on
experimental signatures and detection of Floquet topological phases using
optical probes.Comment: 16 pages, 10 figure
Structure and implementation of novel task rules: A cross-sectional developmental study
This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.Rule-based performance improves remarkably throughout childhood. The present study
examined how children and adolescents structured tasks and implemented rules when novel
task instructions were presented in a child-friendly version of a novel instruction-learning
paradigm. Each mini-block started with the presentation of the new stimulus-response
mappings for a GO task. Prior to implementing this mapping, responses were required to
advance through screens during a preparatory (NEXT) phase. Children (4-11 years) and late
adolescents (17-19 years) responded more slowly during the NEXT phase when the NEXT
response was incompatible with the instructed stimulus-response mapping. This instructionbased
interference effect was more pronounced in young children than in older children. We
argue that these findings are most consistent with age-related differences in rule structuring.
We discuss the implications of our findings for theories of rule-based performance,
instruction-based learning, and development.This work was supported by an ERC starting grant to FV (No. 312445)
Quasiparticle interference patterns as a test for the nature of the pseudogap phase in the cuprate superconductors
Electrons, when scattered by static random disorder, form standing waves that
can be imaged using scanning tunneling microscopy. Such interference patterns,
observable by the recently developed technique of Fourier transform scanning
tunneling spectroscopy (FT-STS), are shown to carry unique fingerprints
characteristic of the electronic order present in a material. We exploit this
feature of the FT-STS technique to propose a test for the nature of the
enigmatic pseudogap phase in the high- cuprate superconductors. Through
their sensitivity to the quasiparticle spectra and coherence factors, the
FT-STS patterns in principle carry enough information to unambiguously
determine the nature of the condensate responsible for the pseudogap
phenomenon. We argue that the next generation of FT-STS experiments, currently
underway, should be able to distinguish between the pseudogap dominated by the
remnants of superconducting order from the pseudogap dominated by some
competing order in the particle-hole channel. Using general arguments and
detailed numerical calculations, we point to certain fundamental differences
between the two scenarios and discuss the prospects for future experiments.Comment: 15 pages REVTeX + 9 ps figures. For related work and info visit
http://www.physics.ubc.ca/~franz; version 2 to appear in IJMP
Duality and the vibrational modes of a Cooper-pair Wigner crystal
When quantum fluctuations in the phase of the superconducting order parameter
destroy the off-diagonal long range order, duality arguments predict the
formation of a Cooper pair crystal. This effect is thought to be responsible
for the static checkerboard patterns observed recently in various underdoped
cuprate superconductors by means of scanning tunneling spectroscopy. Breaking
of the translational symmetry in such a Cooper pair Wigner crystal may, under
certain conditions, lead to the emergence of low lying transverse vibrational
modes which could then contribute to thermodynamic and transport properties at
low temperatures. We investigate these vibrational modes using a continuum
version of the standard vortex-boson duality, calculate the speed of sound in
the Cooper pair Wigner crystal and deduce the associated specific heat and
thermal conductivity. We then suggest that these modes could be responsible for
the mysterious bosonic contribution to the thermal conductivity recently
observed in strongly underdoped ultraclean single crystals of YBCO tuned across
the superconductor-insulator transition.Comment: 14 pages; 3 figures; corrected the sample size value; version 3 to
appear in PR
Magnetic field evolution of the quasiparticle interference in a d-wave superconductor
Quasiparticle interference in a d-wave superconductor with weak disorder
produces distinctive peaks in the Fourier-transformed local density of states
measured by scanning tunneling spectroscopy. We predict that amplitudes of
these peaks can be enhanced or suppressed by applied magnetic field according
to a very specific pattern governed by the symmetry of the superconducting
order parameter. This calculated pattern agrees with the recent experimental
measurement and suggests that the technique could be useful for probing the
underlying normal state at high fields.Comment: 4 pages, 2 figures; version to appear in PRB/R
Quantum oscillations from Fermi arcs
When a metal is subjected to strong magnetic field B nearly all measurable
quantities exhibit oscillations periodic in 1/B. Such quantum oscillations
represent a canonical probe of the defining aspect of a metal, its Fermi
surface (FS). In this study we establish a new mechanism for quantum
oscillations which requires only finite segments of a FS to exist. Oscillations
periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our
results reconcile the recent breakthrough experiments showing quantum
oscillations in a cuprate superconductor YBCO, with a well-established result
of many angle resolved photoemission (ARPES) studies which consistently
indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal
state of the cuprates.Comment: 8 pages, 5 figure
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
- …