19 research outputs found

    Oberflächenspannung auf Si(111) : Heteroepitaxie von Ge und CaF2, Adsorption von H und Sb

    Get PDF
    [no abstract

    Formation and evolution of metallocene single-molecule circuits with direct gold-π links

    Full text link
    Single-molecule circuits with group 8 metallocenes are formed without additional linker groups in scanning tunneling microscope-based break junction (STMBJ) measurements at cryogenic and room-temperature conditions with gold (Au) electrodes. We investigate the nature of this direct gold-π binding motif and its effect on molecular conductance and persistence characteristics during junction evolution. The measurement technique under cryogenic conditions tracks molecular plateaus through the full cycle of extension and compression. Analysis reveals that junction persistence when the metal electrodes are pushed together correlates with whether electrodes are locally sharp or blunt, suggesting distinct scenarios for metallocene junction formation and evolution. The top and bottom surfaces of the “barrel”-shaped metallocenes present the electron-rich π system of cyclopentadienyl rings, which interacts with the gold electrodes in two distinct ways. An undercoordinated gold atom on a sharp tip forms a donor–acceptor bond to a specific carbon atom in the ring. However, a small, flat patch on a dull tip can bind more strongly to the ring as a whole through van der Waals interactions. Density functional theory (DFT)-based calculations of model electrode structures provide an atomic-scale picture of these scenarios, demonstrating the role of these bonding motifs during junction evolution and showing that the conductance is relatively independent of tip atomic-scale structure. The nonspecific interaction of the cyclopentadienyl rings with the electrodes enables extended conductance plateaus, a mechanism distinct from that identified for the more commonly studied, rod-shaped organic molecular wires.FA9550-19-1-0224 - Department of Defense/AFOSRAccepted manuscrip

    Frontier Orbital Degeneracy: A new Concept for Tailoring the Magnetic State in Organic Semiconductor Adsorbates

    Full text link
    Kondo resonances in molecular adsorbates are an important building block for applications in the field of molecular spintronics. Here, we introduce the novel concept of using frontier orbital degeneracy for tailoring the magnetic state, which is demonstrated for the case of the organic semiconductor 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile (HATCN, C18N12) on Ag(111). Low-temperature scanning tunneling microscopy/spectroscopy (LT-STM/STS) measurements reveal the existence of two types of adsorbed HATCN molecules with distinctly different appearances and magnetic states, as evident from the presence or absence of an Abrikosov-Suhl-Kondo resonance. Our DFT results show that HATCN on Ag(111) supports two almost isoenergetic states, both with one excess electron transferred from the Ag surface, but with magnetic moments of either 0 or 0.65 uB. Therefore, even though all molecules undergo charge transfer of one electron from the Ag substrate, they exist in two different molecular magnetic states that resemble a free doublet or an entangled spin state. We explain how the origin of this behavior lies in the twofold degeneracy of the lowest unoccupied molecular orbitals of gas phase HATCN, lifted upon adsorption and charge-transfer from Ag(111). Our combined STM and DFT study introduces a new pathway to tailoring the magnetic state of molecular adsorbates on surfaces, with significant potential for spintronics and quantum information science

    Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores

    No full text
    Graphene nanoribbons (GNRs) attract much attention from researchers due to their tunable physical properties and potential for becoming nanoscale building blocks of electronic devices. GNRs can be synthesized with atomic precision by on-surface approaches from specially designed molecular precursors. While a considerable number of ribbons with very diverse structures and properties have been demonstrated in recent years, there have been only limited examples of on-surface synthesized GNRs modified with functional groups. In this study, we designed a nanoribbon, in which the chevron GNR backbone is decorated with phenyl functionalities, and demonstrate the on-surface synthesis of these GNRs on Au(111). We show that the phenyl modification affects the assembly of the GNR polymer precursors through π–π interactions. Scanning tunneling spectroscopy of the modified GNRs on Au(111) revealed that they have a band gap of 2.50 ± 0.02 eV, which is comparable to that of the parent chevron GNR. The phenyl functionalization leads to a shift of the band edges to lower energies, suggesting that it could be a useful tool for the GNR band structure engineering. We also investigated lateral fusion of the phenyl-modified GNRs and demonstrate that it could be used to engineer different kinds of atomically precise graphene nanopores. A similar functionalization approach could be potentially applied to other GNRs to affect their on-surface assembly, modify their electronic properties, and realize graphene nanopores with a variety of structures

    Configuration-specific electronic structure of strongly interacting interfaces: TiOPc on Cu(110)

    No full text
    We use low-temperature scanning tunneling microscopy in combination with angle-resolved ultraviolet and two-photon photoemission spectroscopy to investigate the interfacial electronic structure of titanyl phthalocyanine (TiOPc) on Cu(110). We show that the presence of two unique molecular adsorption configurations is crucial for a molecular-level analysis of the hybridized interfacial electronic structure. Specifically, thermally induced self-assembly exposes marked adsorbate-configuration-specific contributions to the interfacial electronic structure. The results of this work demonstrate an avenue towards understanding and controlling interfacial electronic structure in chemisorbed films even for the case of complex film structure.National Science Foundation [CHE-1213243, CHE-1565497]; Arizona TRIF imaging fellowship; US DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0016343]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Autonomous Molecular Structure Imaging with High-Resolution Atomic Force Microscopy for Molecular Mixture Discovery

    No full text
    Due to its single-molecule sensitivity, high-resolution atomic force microscopy (HR-AFM) has proved to be a valuable and uniquely advantageous tool to study complex molecular mixtures, which hold promise for developing clean energy and achieving environmental sustainability. However, significant challenges remain to achieve the full potential of the sophisticated and time-consuming experiments. Automation combined with machine learning (ML) and artificial intelligence (AI) is key to overcoming these challenges. Here we present Auto-HR-AFM, an AI tool to automatically collect HR-AFM images of petroleum-based mixtures. We trained an instance segmentation model to teach Auto-HR-AFM how to recognize features in HR-AFM images. Auto-HR-AFM then uses that information to optimize the imaging by adjusting the probe-molecule distance for each molecule in the run. Auto-HR-AFM is the initial tool that will lead to fully automated scanning probe microscopy (SPM) experiments, from start to finish. This automation will allow SPM to become a mainstream characterization technique for complex mixtures, an otherwise unattainable target

    Direct Observation of Twin van der Waals Molecular Chains

    No full text
    The van der Waals (vdW) assemblies are the most common structures of materials. However, direct mapping of intermolecular electron clouds of a vdW assembly has never been obtained, even though the intramolecular electron clouds were visualized by atomic-resolution techniques. In this report, we unprecedentedly mapped the intermolecular electron cloud of the assemblies of ethanol molecules via ethyl groups with high-resolution atomic force microscopy and scanning tunneling microscopy at 5 K, leading to the first visualization of vdW molecular chains, in which ethanol molecules assemble into twin vdW molecular chains in a reverse parallel configuration on the Ag(111) plane. Furthermore, spontaneous order-disorder transitions in the chain were dynamically observed, suggesting its unusual properties different from those of 2D vdW materials. These findings provide an eye to see the atomic world of vdW materials

    A joint frailty model to estimate the recurrence process and the disease-specific mortality process without needing the cause of death.

    No full text
    In chronic diseases, such as cancer, recurrent events (such as relapses) are commonly observed; these could be interrupted by death. With such data, a joint analysis of recurrence and mortality processes is usually conducted with a frailty parameter shared by both processes. We examined a joint modeling of these processes considering death under two aspects: 'death due to the disease under study' and 'death due to other causes', which enables estimating the disease-specific mortality hazard. The excess hazard model was used to overcome the difficulties in determining the causes of deaths (unavailability or unreliability); this model allows estimating the disease-specific mortality hazard without needing the cause of death but using the mortality hazards observed in the general population. We propose an approach to model jointly recurrence and disease-specific mortality processes within a parametric framework. A correlation between the two processes is taken into account through a shared frailty parameter. This approach allows estimating unbiased covariate effects on the hazards of recurrence and disease-specific mortality. The performance of the approach was evaluated by simulations with different scenarios. The method is illustrated by an analysis of a population-based dataset on colon cancer with observations of colon cancer recurrences and deaths. The benefits of the new approach are highlighted by comparison with the 'classical' joint model of recurrence and overall mortality. Moreover, we assessed the goodness of fit of the proposed model. Comparisons between the conditional hazard and the marginal hazard of the disease-specific mortality are shown, and differences in interpretation are discussed
    corecore