12 research outputs found
Réponses de la respiration à l'augmentation de la température nocturne chez le riz : production de biomasse et de grains et conséquences pour les modèles de culture
In tropical climate, increasing night temperature was reported to be associated with a decline in grain yield in rice. This can be partly due to an increase in night respiration rate (Rn) which causes a depletion of carbohydrate supply available for plant growth. Mitochondrial respiration is commonly divided in two functional components; -Maintenance respiration (Rm) which is associated with all biochemical reactions required to maintain existing biomass. The rate of this respiration component would double when ambient temperature increase by 10°C (Q10 = 2). -Growth respiration which is associated with all processes involved in establishment of new biomass. This respiration component is mainly driven by carbohydrate supply and thus, by the photosynthesis rate. The present work aims to (1) determine the effects of short-term (without acclimation) and long-term (with acclimation) increase in night temperature similar to that projected by future climate scenarios on vegetative biomass production and grain yield; (2) evaluate, in terms of loss of biomass, the cost of Rn at plant scale; (3) estimate the maintenance respiration rate (Rm) and its response to temperature; and (4) evaluate the impact of Q10 value on biomass production. To achieve these objectives, three experiments (one unexploitable) were conducted in greenhouses, two in growth chambers and one in the field, at Montpellier (France) or at the experimental station of IRRI (International Rice Research Institute). The moderate increase in night temperature from panicle initiation to maturity in the field by 1.9°C and in growth chambers by 3.5°C, and form transplanting to maturity in greenhouse experiments by 3.8 to 5.4°C, did affect significantly Rn that increased by 13 to 35%. In the same time, it did not affect significantly biomass production and grain yield for indica and aus cultivars, whereas grain production decline was observed for japonica. Calculated biomass losses due to increased Rn under increased night temperature were important but were not associated with a change in biomass production or grain yield. Effect of long-term exposure to increased night temperature (acclimation) was smaller (factor 1.14 to 1.67 between 21 to 31°C) than that of short-term exposure (without acclimation) (factor 2.4 between 21 to 31°C). In this work, 0.3 to 1.2% (expanded leaves) and 1.5 to 2.5% (whole seedlings) of existing dry biomass was lost daily to Rm. The Rn was composed by about 33% of Rm, which increased by factor 1.49 between 21 and 31°C. This is below the common assumption of Q10 = 2 that thus overestimates the effect of increasing night temperature on Rm.A model sensitivity analysis showed that the Q10 value is important in the prediction of biomass production in crop models. Yield is expected to decline by 9% (Q10 = 2 assumption) and by 5% (Q10 = 1.5 assumption) with increasing mean daily temperature by 2°C. Thus, taking into account the acclimation response to temperature change is important for models accuracy. Making crop models more accurate requires more knowledge thermal effect on respiration in the field.Sous un climat tropical humide, l'augmentation de la température nocturne a été associée à une diminution du rendement chez le riz. Une des hypothèses sous-tendant cette diminution est l'augmentation du taux de respiration nocturne (Rn) diminuant les ressources carbonées disponibles pour la croissance de la plante. La respiration mitochondriale est communément divisée en deux composantes fonctionnelles :-la respiration de maintenance (Rm), qui est associée à toutes les réactions biochimiques requises pour entretenir la biomasse existante. Le taux de Rm doublerait suite à une augmentation de la température ambiante de 10°C (Q10 = 2) ;-la respiration de croissance (Rg), qui est associée à tous les processus impliqués dans la création de biomasse. Cette composante de la respiration est principalement dépendante de la disponibilité en carbohydrates dans la plante, et donc de la photosynthèse.Ce travail de thèse a pour objectifs de (1) déterminer l'effet instantané (sans acclimatation) et sur le long terme (acclimatation) de l'augmentation de la température nocturne, proche de celle prédite par les scénarios climatiques, sur la respiration et la production de biomasse et de grains, (2) évaluer le coût de Rn en terme de biomasse à l'échelle de la plante entière, (3) estimer la respiration de maintenance (Rm) et sa réponse à l'augmentation de la température, et (4) évaluer l'effet de la valeur Q10 sur la modélisation de la production en biomasse. Pour atteindre ces objectifs, trois expérimentations (dont une inexploitable) ont été conduites en serre, deux en chambres de culture et une au champ, à Montpellier (France) et à la station expérimentale de l'IRRI (International Rice Research Institute, Philippines). L'augmentation modérée de la température nocturne de 1.9°C au champ et 3.5°C en chambre de culture de l'initiation paniculaire à maturité, et de 3.8 à 5.4°C en serre du repiquage à maturité, a entraîné l'augmentation significative de Rn (+13 à +35%). Dans le même temps, cette augmentation n'a pas eu d'effet significatif sur la production de biomasse et de grains des écotypes indica et aus, mais la production en grains de l'écotype japonica a été significativement plus faible. Le coût en biomasse de la respiration, en conditions de température nocturne plus élevée, a augmenté légèrement mais n'a pas été associé à une variation significative de la production de biomasse. L'augmentation de la température nocturne sur le long terme (acclimatation) a eu un impact plus faible sur Rn (facteur de 1.14 à 1.67 entre 21 et 31°C) que l'augmentation instantanée (sans acclimatation) (facteur 2.4 entre 21 et 31°C). Le coût quotidien en biomasse de Rm, a été de 0.3 à 1.2% (feuilles complètement développées) et de 1.5 à 2.5% (plantules entières). La Rm a augmenté d'un facteur 1.49 entre 21 et 31°C et représentait environ 33% de la respiration nocturne. Ce facteur est plus faible que l'hypothèse du Q10 = 2 qui surestime les effets de l'augmentation des températures sur Rm.Le modèle d'analyse de sensibilité a montré que la valeur du coefficient Q10 a un rôle significatif dans la prédiction de la production de biomasse dans les modèles de culture. Le rendement simulé diminue de 9% (Q10 = 2) et de 5% (Q10 = 1.5) lorsque la température moyenne journalière augmente de 2°C. Ainsi, prendre en compte l'acclimatation dans la réponse des plantes à l'augmentation des températures est important pour augmenter la précision des modèles. L'augmentation de la précision des modèles passera aussi par l'analyse des variations de la respiration en conditions naturelles
Propagation d'onde hydraulique et signalisation longue distance chez l'arbre
Diplôme : Master Recherch
Respiration response to increased night temperature in rice : biomass andgrain productions and implications for crop models
Sous un climat tropical humide, l'augmentation de la température nocturne a été associée à une diminution du rendement chez le riz. Une des hypothèses sous-tendant cette diminution est l'augmentation du taux de respiration nocturne (Rn) diminuant les ressources carbonées disponibles pour la croissance de la plante. La respiration mitochondriale est communément divisée en deux composantes fonctionnelles :- la respiration de maintenance (Rm), qui est associée à toutes les réactions biochimiques requises pour entretenir la biomasse existante. Le taux de Rm doublerait suite à une augmentation de la température ambiante de 10°C (Q10 = 2) ;- la respiration de croissance (Rg), qui est associée à tous les processus impliqués dans la création de biomasse. Cette composante de la respiration est principalement dépendante de la disponibilité en carbohydrates dans la plante, et donc de la photosynthèse.Ce travail de thèse a pour objectifs de (1) déterminer l'effet instantané (sans acclimatation) et sur le long terme (acclimatation) de l'augmentation de la température nocturne, proche de celle prédite par les scénarios climatiques, sur la respiration et la production de biomasse et de grains, (2) évaluer le coût de Rn en terme de biomasse à l'échelle de la plante entière, (3) estimer la respiration de maintenance (Rm) et sa réponse à l'augmentation de la température, et (4) évaluer l'effet de la valeur Q10 sur la modélisation de la production en biomasse. Pour atteindre ces objectifs, trois expérimentations (dont une inexploitable) ont été conduites en serre, deux en chambres de culture et une au champ, à Montpellier (France) et à la station expérimentale de l'IRRI (International Rice Research Institute, Philippines). L'augmentation modérée de la température nocturne de 1.9°C au champ et 3.5°C en chambre de culture de l'initiation paniculaire à maturité, et de 3.8 à 5.4°C en serre du repiquage à maturité, a entraîné l'augmentation significative de Rn (+13 à +35%). Dans le même temps, cette augmentation n'a pas eu d'effet significatif sur la production de biomasse et de grains des écotypes indica et aus, mais la production en grains de l'écotype japonica a été significativement plus faible. Le coût en biomasse de la respiration, en conditions de température nocturne plus élevée, a augmenté légèrement mais n'a pas été associé à une variation significative de la production de biomasse. L'augmentation de la température nocturne sur le long terme (acclimatation) a eu un impact plus faible sur Rn (facteur de 1.14 à 1.67 entre 21 et 31°C) que l'augmentation instantanée (sans acclimatation) (facteur 2.4 entre 21 et 31°C). Le coût quotidien en biomasse de Rm, a été de 0.3 à 1.2% (feuilles complètement développées) et de 1.5 à 2.5% (plantules entières). La Rm a augmenté d'un facteur 1.49 entre 21 et 31°C et représentait environ 33% de la respiration nocturne. Ce facteur est plus faible que l'hypothèse du Q10 = 2 qui surestime les effets de l'augmentation des températures sur Rm.Le modèle d'analyse de sensibilité a montré que la valeur du coefficient Q10 a un rôle significatif dans la prédiction de la production de biomasse dans les modèles de culture. Le rendement simulé diminue de 9% (Q10 = 2) et de 5% (Q10 = 1.5) lorsque la température moyenne journalière augmente de 2°C. Ainsi, prendre en compte l'acclimatation dans la réponse des plantes à l'augmentation des températures est important pour augmenter la précision des modèles. L'augmentation de la précision des modèles passera aussi par l'analyse des variations de la respiration en conditions naturelles.In tropical climate, increasing night temperature was reported to be associated with a decline in grain yield in rice. This can be partly due to an increase in night respiration rate (Rn) which causes a depletion of carbohydrate supply available for plant growth. Mitochondrial respiration is commonly divided in two functional components; - Maintenance respiration (Rm) which is associated with all biochemical reactions required to maintain existing biomass. The rate of this respiration component would double when ambient temperature increase by 10°C (Q10 = 2). - Growth respiration which is associated with all processes involved in establishment of new biomass. This respiration component is mainly driven by carbohydrate supply and thus, by the photosynthesis rate. The present work aims to (1) determine the effects of short-term (without acclimation) and long-term (with acclimation) increase in night temperature similar to that projected by future climate scenarios on vegetative biomass production and grain yield; (2) evaluate, in terms of loss of biomass, the cost of Rn at plant scale; (3) estimate the maintenance respiration rate (Rm) and its response to temperature; and (4) evaluate the impact of Q10 value on biomass production. To achieve these objectives, three experiments (one unexploitable) were conducted in greenhouses, two in growth chambers and one in the field, at Montpellier (France) or at the experimental station of IRRI (International Rice Research Institute). The moderate increase in night temperature from panicle initiation to maturity in the field by 1.9°C and in growth chambers by 3.5°C, and form transplanting to maturity in greenhouse experiments by 3.8 to 5.4°C, did affect significantly Rn that increased by 13 to 35%. In the same time, it did not affect significantly biomass production and grain yield for indica and aus cultivars, whereas grain production decline was observed for japonica. Calculated biomass losses due to increased Rn under increased night temperature were important but were not associated with a change in biomass production or grain yield. Effect of long-term exposure to increased night temperature (acclimation) was smaller (factor 1.14 to 1.67 between 21 to 31°C) than that of short-term exposure (without acclimation) (factor 2.4 between 21 to 31°C). In this work, 0.3 to 1.2% (expanded leaves) and 1.5 to 2.5% (whole seedlings) of existing dry biomass was lost daily to Rm. The Rn was composed by about 33% of Rm, which increased by factor 1.49 between 21 and 31°C. This is below the common assumption of Q10 = 2 that thus overestimates the effect of increasing night temperature on Rm.A model sensitivity analysis showed that the Q10 value is important in the prediction of biomass production in crop models. Yield is expected to decline by 9% (Q10 = 2 assumption) and by 5% (Q10 = 1.5 assumption) with increasing mean daily temperature by 2°C. Thus, taking into account the acclimation response to temperature change is important for models accuracy. Making crop models more accurate requires more knowledge thermal effect on respiration in the field
Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?
J. Exp. Bot. ISI Document Delivery No.: AF8YV Times Cited: 0 Cited Reference Count: 45 Lopez, Rosana Badel, Eric Peraudeau, Sebastien Leblanc-Fournier, Nathalie Beaujard, Francois Julien, Jean-Louis Cochard, Herve Moulia, Bruno Oxford univ press OxfordBending of trees causes a transient hydraulic overpressure signal that propagates rapidly along the vascular system in planta. This may be a mechanobiological remote signalling of the mechanical stress.When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices
A new good candidate for a long distance signaling of mechanical strain events: the hydraulic pulses
Wind is known to increase water stresses by increasing evaporation rates, but a possible additional negative effect of wind sways mechanically impairing water conductivity has remained disputed. Coupling flow-meters and pressure sensors with a mechanical testing device, we investigated the hydraulic effects of mechanical deformation of saturated branches and stems. Experiments have been carried out on isolated branch segments of several angiosperm and gymnosperm species or in planta on a stem of a living tree (poplar). Permanent bending generates only a negligible effect on conductivity, even with very large deformations. This indicates that there are no major changes in the anatomical structure, i.e. mainly the vessel lumens (angiosperms) or tracheids (gymnosperms) dimensions, that could lead to a loss of efficiency of the vascular system. Nevertheless, for the first time, we display that bending strains generate a transient high pressure variation that is able to propagate rapidly along the water conduits. We quantified these pressure pulses and we observed i) that living cells were not involved in the phenomenon, ii) an high inter-specific variability of its magnitude, iii) a proportional relationship of this magnitude with the strained volume. We hypothesize that the origin of this hydraulic pulse is the poroelastic behavior of the saturated wood material and we proposed a first modelling to explain the mechanism: during deformation of the conduits the incompressible water contained in lumens and cell walls moves in the conduits with no contribution of the living parenchyma cells. This generates a local transient overpressure in the conduit that propagates in the vascular system. In planta experiments confirmed that hydraulic pulses propagate along the vascular system of the xylem symmetrically to the upper and lower regions of the stem. As a signaling process, this hydraulic behavior could be an efficient for a fast long distance signal transporting mecanobiological information to the extreme organs as leaves, roots and apices