2,634 research outputs found
SECTAR: Model for economically optimal sustained groundwater yield planning
This paper presents an approach for computing economically optimal sustained yield ground-water extract ion strategies and supportable irrigated crop acreages. Computed regional strategies maximize the present value of net economic return_ They are useful for long-term agricultural planning because they are sustainable even beyond the planning period considered within the economic optimization. The hybrid approach uses only steady-state flow equations and iterative simulation/optimization to reduce optimization memory requirements below that required by conventional models utilizing both steady and unsteady equations. SECTAR, a quadratic optimization planning model assumes heads will evolve toward optimal steady-state but does initially not know the nonlinear rates of evolution in each cell. Rates of change in head are assumed, and optimization is performed. Subsequently, a linear or nonlinear simulation model computes actual time-varying rates of head change that would result from implementing the optimal strategy. Rates of change assumed in the optimization model are then corrected to correspond to simulated values. The process of assuming head-change rates, computing optimal pumping and eventual steady-state head values, and then simulating is repeated. Assumed and simulated heads are effectively the same within three or four cycles. Convergence occurs because of their common tendency to evolve to steady state. The procedure is applicable for situations of constant or time-varying transmissivity. Strategies developed for regions with initially stressed and unstressed potentiometric surfaces are compared. Evolution toward target steady-s,tate conditions and sensitivity of strategies to aquifer and economic parameters is presented
Gravitational radiation from pulsar glitches
The nonaxisymmetric Ekman flow excited inside a neutron star following a
rotational glitch is calculated analytically including stratification and
compressibility. For the largest glitches, the gravitational wave strain
produced by the hydrodynamic mass quadrupole moment approaches the sensitivity
range of advanced long-baseline interferometers. It is shown that the
viscosity, compressibility, and orientation of the star can be inferred in
principle from the width and amplitude ratios of the Fourier peaks (at the spin
frequency and its first harmonic) observed in the gravitational wave spectrum
in the plus and cross polarizations. These transport coefficients constrain the
equation of state of bulk nuclear matter, because they depend sensitively on
the degree of superfluidity.Comment: 28 page
Superfluid turbulence and pulsar glitch statistics
Experimental evidence is reviewed for the existence of superfluid turbulence
in a differentially rotating, spherical shell at high Reynolds numbers
(\Rey\gsim 10^3), such as the outer core of a neutron star. It is shown that
torque variability increases with \Rey, suggesting that glitch activity in
radio pulsars may be a function of \Rey as well. The \Rey distribution of
the 67 glitching radio pulsars with characteristic ages {\rm
yr} is constructed from radio timing data and cooling curves and compared with
the \Rey distribution of all 348 known pulsars with {\rm
yr}. The two distributions are different, with a Kolmogorov-Smirnov probability
. The conclusion holds for (modified) Urca and
nonstandard cooling, and for Newtonian and superfluid viscosities
Avalanche dynamics of radio pulsar glitches
We test statistically the hypothesis that radio pulsar glitches result from
an avalanche process, in which angular momentum is transferred erratically from
the flywheel-like superfluid in the star to the slowly decelerating, solid
crust via spatially connected chains of local, impulsive, threshold-activated
events, so that the system fluctuates around a self-organised critical state.
Analysis of the glitch population (currently 285 events from 101 pulsars)
demonstrates that the size distribution in individual pulsars is consistent
with being scale invariant, as expected for an avalanche process. The
waiting-time distribution is consistent with being exponential in seven out of
nine pulsars where it can be measured reliably, after adjusting for
observational limits on the minimum waiting time, as for a constant-rate
Poisson process. PSR J05376910 and PSR J08354510 are the exceptions;
their waiting-time distributions show evidence of quasiperiodicity. In each
object, stationarity requires that the rate equals , where is the angular acceleration of the
crust, is the mean glitch size, and is the
relative angular acceleration of the crust and superfluid. There is no evidence
that changes monotonically with spin-down age. The rate distribution
itself is fitted reasonably well by an exponential for . For , its exact form is unknown; the
exponential overestimates the number of glitching pulsars observed at low
, where the limited total observation time exercises a selection bias.Comment: Accepted for publication in the Astrophysical Journa
Effective dynamics of a nonabelian plasma out of equilibrium
Starting from kinetic theory, we obtain a nonlinear dissipative formalism
describing the nonequilibrium evolution of scalar colored particles coupled
selfconsistently to nonabelian classical gauge fields. The link between the
one-particle distribution function of the kinetic description and the variables
of the effective theory is determined by extremizing the entropy production.
This method does not rely on the usual gradient expansion in fluid dynamic
variables, and therefore the resulting effective theory can handle situations
where these gradients (and hence the momentum-space anisotropies) are expected
to be large. The formalism presented here, being computationally less demanding
than kinetic theory, may be useful as a simplified model of the dynamics of
color fields during the early stages of heavy ion collisions and in phenomena
related to parton energy loss.Comment: 20 two-column pages, 2 figures. v3: minor changes. Accepted for
publication in Phys. Rev.
Linking the hydrodynamic and kinetic description of a dissipative relativistic conformal theory
We use the entropy production variational method to associate a one particle
distribution function to the assumed known energy-momentum and entropy currents
describing a relativistic conformal fluid. Assuming a simple form for the
collision operator we find this one particle distribution function explicitly,
and show that this method of linking the hydro and kinetic description is a non
trivial generalization of Grad's ansatz. The resulting constitutive relations
are the same as in the conformal dissipative type theories discussed in J.
Peralta-Ramos and E. Calzetta, Phys. Rev. D {\bfseries 80}, 126002 (2009). Our
results may prove useful in the description of freeze-out in ultrarelativistic
heavy-ion collisions.Comment: v2: 23 pages, no figures, accepted in Phys. Rev.
Global three-dimensional flow of a neutron superfluid in a spherical shell in a neutron star
We integrate for the first time the hydrodynamic
Hall-Vinen-Bekarevich-Khalatnikov equations of motion of a -paired
neutron superfluid in a rotating spherical shell, using a pseudospectral
collocation algorithm coupled with a time-split fractional scheme. Numerical
instabilities are smoothed by spectral filtering. Three numerical experiments
are conducted, with the following results. (i) When the inner and outer spheres
are put into steady differential rotation, the viscous torque exerted on the
spheres oscillates quasiperiodically and persistently (after an initial
transient). The fractional oscillation amplitude () increases
with the angular shear and decreases with the gap width. (ii) When the outer
sphere is accelerated impulsively after an interval of steady differential
rotation, the torque increases suddenly, relaxes exponentially, then oscillates
persistently as in (i). The relaxation time-scale is determined principally by
the angular velocity jump, whereas the oscillation amplitude is determined
principally by the gap width. (iii) When the mutual friction force changes
suddenly from Hall-Vinen to Gorter-Mellink form, as happens when a rectilinear
array of quantized Feynman-Onsager vortices is destabilized by a counterflow to
form a reconnecting vortex tangle, the relaxation time-scale is reduced by a
factor of compared to (ii), and the system reaches a stationary state
where the torque oscillates with fractional amplitude about a
constant mean value. Preliminary scalings are computed for observable
quantities like angular velocity and acceleration as functions of Reynolds
number, angular shear, and gap width. The results are applied to the timing
irregularities (e.g., glitches and timing noise) observed in radio pulsars.Comment: 6 figures, 23 pages. Accepted for publication in Astrophysical
Journa
Average stresses and force fluctuations in non-cohesive granular materials
A lattice model is presented for investigating the fluctuations in static
granular materials under gravitationally induced stress. The model is similar
in spirit to the scalar q-model of Coppersmith et al., but ensures balance of
all components of forces and torques at each site. The geometric randomness in
real granular materials is modeled by choosing random variables at each site,
consistent with the assumption of cohesionless grains. Configurations of the
model can be generated rapidly, allowing the statistical study of relatively
large systems. For a 2D system with rough walls, the model generates
configurations consistent with continuum theories for the average stresses
(unlike the q-model) without requiring the assumption of a constitutive
relation. For a 2D system with periodic boundary conditions, the model
generates single-grain force distributions similar to those obtained from the
q-model with a singular distribution of q's.Comment: 18 pages, 10 figures. Uses aps,epsfig,graphicx,floats,revte
LAS JORNADAS DE INTERCAMBIO ACADÉMICO PÚBLICO-PRIVADO: UN ÁMBITO DE FORMACIÓN, INTERCAMBIO Y VINCULACIÓN
Interdisciplinary and open discussion spaces between public and private research have been produced over the years and today they are presented in different ways and instances. However, the possibility of creating a "safe" space for discussion, for the professional and academic development of professionals related to science and technology, with the possibility of generating work and collaboration links, led us in 2013 a group of researchers with a look beyond the conjuncture to work in a framework of collaborative action and public-private exchange.Los espacios interdisciplinarios y de discusión abiertas entre la investigación pública y privada se han producido a lo largo de los años y hoy en día se presentan de diferente manera e instancias. Sin embargo, la posibilidad de crear un espacio “seguro” de discusión, para el desarrollo profesional y académico de profesionales relacionados con la ciencia y la tecnología, con la posibilidad de generar vínculos de trabajo y colaboración, nos llevó a que en el año 2013 un grupo de investigadores con una mirada más allá de la coyuntura se pusieran a trabajar en un marco de acción colaborativa y de intercambio publico privado
- …