104 research outputs found

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    No Free Lunch Theorem and Black-Box Complexity Analysis for Adversarial Optimisation

    Get PDF
    Black-box optimisation is one of the important areas in optimisation. The originalNo Free Lunch (NFL) theorems highlight the limitations of traditional black-boxoptimisation and learning algorithms, serving as a theoretical foundation for tradi-tional optimisation. No Free Lunch Analysis in adversarial (also called maximin)optimisation is a long-standing problem [ 45 , 46]. This paper first rigorously provesa (NFL) Theorem for general black-box adversarial optimisation when consideringNash Equilibrium (NE) as the solution concept. We emphasise the solution concept(i.e. define the optimality in adversarial optimisation) as the key in our NFL theo-rem. In particular, if the Nash Equilibrium is considered as the solution concept,then the average performance of all black-box adversarial optimisation algorithmsis the same. Moreover, we first introduce black-box complexity to analyse theblack-box adversarial optimisation algorithm. We employ Yao’s Principle andour new NFL Theorem to provide general lower bounds for query complexityof finding Nash Equilibrium in adversarial optimisation. Finally, we illustratethe practical ramifications of our results on simple two-player zero-sum games.More specifically, no black-box optimisation algorithm for finding the unique Nashequilibrium in two-player zero-sum games can exceed the logarithmic complexityrelative to search space size. Meanwhile, no black-box algorithm can solve anybimatrix game with unique NE faster than the linear query complexity in terms ofthe size of input payoff matrices

    On the Impact of Mutation-Selection Balance on the Runtime of Evolutionary Algorithms

    Full text link
    The interplay between mutation and selection plays a fundamental role in the behaviour of evolutionary algorithms (EAs). However, this interplay is still not completely understood. This paper presents a rigorous runtime analysis of a non-elitist population-based EA that uses the linear ranking selection mechanism. The analysis focuses on how the balance between parameter η\eta, controlling the selection pressure in linear ranking, and parameter χ\chi controlling the bit-wise mutation rate, impacts the runtime of the algorithm. The results point out situations where a correct balance between selection pressure and mutation rate is essential for finding the optimal solution in polynomial time. In particular, it is shown that there exist fitness functions which can only be solved in polynomial time if the ratio between parameters η\eta and χ\chi is within a narrow critical interval, and where a small change in this ratio can increase the runtime exponentially. Furthermore, it is shown quantitatively how the appropriate parameter choice depends on the characteristics of the fitness function. In addition to the original results on the runtime of EAs, this paper also introduces a very useful analytical tool, i.e., multi-type branching processes, to the runtime analysis of non-elitist population-based EAs

    Concentration Tail-Bound Analysis of Coevolutionary and Bandit Learning Algorithms

    Get PDF
    Runtime analysis, as a branch of the theory of AI, studies how the number of iterations algorithms take before finding a solution (its runtime) depends on the design of the algorithm and the problem structure. Drift analysis is a state-of-the-art tool for estimating the runtime of randomised algorithms, such as bandit and evolutionary algorithms. Drift refers roughly to the expected progress towards the optimum per iteration. This paper considers the problem of deriving concentration tail-bounds on the runtime of algorithms. It provides a novel drift theorem that gives precise exponential tail-bounds given positive, weak, zero and even negative drift. Previously, such exponential tail bounds were missing in the case of weak, zero, or negative drift

    Self-adaptation in non-elitist evolutionary algorithms on discrete problems with unknown structure

    Get PDF
    A key challenge to make effective use of evolutionary algorithms is to choose appropriate settings for their parameters. However, the appropriate parameter setting generally depends on the structure of the optimisation problem, which is often unknown to the user. Non-deterministic parameter control mechanisms adjust parameters using information obtained from the evolutionary process. Self-adaptation -- where parameter settings are encoded in the chromosomes of individuals and evolve through mutation and crossover -- is a popular parameter control mechanism in evolutionary strategies. However, there is little theoretical evidence that self-adaptation is effective, and self-adaptation has largely been ignored by the discrete evolutionary computation community. Here we show through a theoretical runtime analysis that a non-elitist, discrete evolutionary algorithm which self-adapts its mutation rate not only outperforms EAs which use static mutation rates on \leadingones, but also improves asymptotically on an EA using a state-of-the-art control mechanism. The structure of this problem depends on a parameter kk, which is \emph{a priori} unknown to the algorithm, and which is needed to appropriately set a fixed mutation rate. The self-adaptive EA achieves the same asymptotic runtime as if this parameter was known to the algorithm beforehand, which is an asymptotic speedup for this problem compared to all other EAs previously studied. An experimental study of how the mutation-rates evolve show that they respond adequately to a diverse range of problem structures. These results suggest that self-adaptation should be adopted more broadly as a parameter control mechanism in discrete, non-elitist evolutionary algorithms.Comment: To appear in IEEE Transactions of Evolutionary Computatio

    No Free Lunch Theorem and Black-Box Complexity Analysis for Adversarial Optimisation

    Get PDF
    Black-box optimisation is one of the important areas in optimisation. The original No Free Lunch (NFL) theorems highlight the limitations of traditional black-box optimisation and learning algorithms, serving as a theoretical foundation for traditional optimisation. No Free Lunch Analysis in adversarial (also called maximin) optimisation is a long-standing problem [45 , 46]. This paper first rigorously proves a (NFL) Theorem for general black-box adversarial optimisation when considering Pure Strategy Nash Equilibrium (NE) as the solution concept. We emphasise the solution concept (i.e. define the optimality in adversarial optimisation) as the key in our NFL theorem. In particular, if Nash Equilibrium is considered as the solution concept and the cost of the algorithm is measured in terms of the number of columns and rows queried in the payoff matrix, then the average performance of all black-box adversarial optimisation algorithms is the same. Moreover, we first introduce black-box complexity to analyse the black-box adversarial optimisation algorithm. We employ Yao’s Principle and our new NFL Theorem to provide general lower bounds for the query complexity of finding a Nash Equilibrium in adversarial optimisation. Finally, we illustrate the practical ramifications of our results on simple two-player zero-sum games. More specifically, no black-box optimisation algorithm for finding the unique Nash equilibrium in two-player zero-sum games can exceed logarithmic complexity relative to search space size. Meanwhile, no black-box algorithm can solve any bimatrix game with unique NE with fewer than a linear number of queries in the size of the payoff matrix
    corecore