314 research outputs found
Recommended from our members
An Extended Nebulosity Of Highly Ionized-Gas In The Sbo Seyfert-Galaxy NGC-3516 - Detection And Study Of The Physical Conditions Of The Gas
NSF AST 73-05312Astronom
Third-dredge-up oxygen in planetary nebulae
The planetary nebulae He 2-436 and Wray 16-423 in the Sagittarius dwarf
galaxy appear to result from nearly twin stars, except that third-dredge-up
carbon is more abundant in He 2-436. A thorough photoionization-model analysis
implies that ratios Ne/O, S/O and Ar/O are significantly smaller in He 2-436,
indicative of third-dredge-up oxygen enrichment. The enrichment of oxygen with
respect to carbon is (7 +/- 4)%. Excess nitrogen in Wray 16-423 suggests third
dredge-up of late CN-cycle products even in these low-mass,
intermediate-metallicity stars.Comment: To appear in Astron. Astrophys. Lett. (Latex, 5 pages, 1 postscript
figure
Detection of deuterium Balmer lines in the Orion Nebula
The detection and first identification of the deuterium Balmer emission
lines, D-alpha and D-beta, in the core of the Orion Nebula is reported.
Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using
the Echelle spectrograph Gecko. These lines are very narrow and have identical
11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably
excited by UV continuum fluorescence from the Lyman (DI) lines and arise from
the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in
Astronomy & Astrophysics, Letter
Observations of Small Scale ISM Structure in Dense Atomic Gas
We present high resolution (R~170,000) Kitt Peak National Observatory Co'ude
Feed telescope observations of the interstellar KI 7698 angstrom line towards 5
multiple star systems with saturated NaI components. We compare the KI
absorption line profiles in each of the two (or three) lines of sight in these
systems, and find significant differences between the sight-lines in 3 out of
the 5 cases. We infer that the small scale structure traced by previous NaI
observations is also present in at least some of the components with saturated
NaI absorption lines, and thus the small scale structures traced by the neutral
species are occurring at some level in clouds of all column densities. We
discuss the implications of that conclusion and a potential explanation by
density inhomogeneities
Variable Interstellar Absorption toward the Halo Star HD 219188 - Implications for Small-Scale Interstellar Structure
Within the last 10 years, strong, narrow Na I absorption has appeared at
v_sun ~ -38 km/s toward the halo star HD 219188; that absorption has continued
to strengthen, by a factor 2-3, over the past three years. The line of sight
appears to be moving into/through a relatively cold, quiescent intermediate
velocity (IV) cloud, due to the 13 mas/yr proper motion of HD 219188; the
variations in Na I probe length scales of 2-38 AU/yr. UV spectra obtained with
the HST GHRS in 1994-1995 suggest N(H_tot) ~ 4.8 X 10^{17} cm^{-2}, ``halo
cloud'' depletions, n_H ~ 25 cm^{-3}, and n_e ~ 0.85-6.2 cm^{-3} (if T ~ 100 K)
for the portion of the IV cloud sampled at that time. The relatively high
fractional ionization, n_e/n_H >~ 0.034, implies that hydrogen must be
partially ionized. The N(Na I)/N(H_tot) ratio is very high; in this case, the
variations in Na I do not imply large local pressures or densities.Comment: 12 pages; aastex; to appear in ApJ
A Na I Absorption Map of the Small-Scale Structure in the Interstellar Gas Toward M15
Using the DensePak fiber optic array on the KPNO WIYN telescope, we have
obtained high S/N echelle spectra of the Na I D wavelength region toward the
central 27" x 43" of the globular cluster M15 at a spatial resolution of 4".
The spectra exhibit significant interstellar Na I absorption at LSR velocities
of +3 km/s (LISM component) and +68 km/s (IVC component). Both components vary
appreciably in strength on these scales. The derived Na I column densities
differ by a factor of 4 across the LISM absorption map and by a factor of 16
across the IVC map. Assuming distances of 500 pc and 1500 pc for the LISM and
IVC clouds, these maps show evidence of significant ISM structure down to the
minimum scales of 2000 AU and 6000 AU probed in these absorbers. The
smallest-scale N(Na I) variations observed in the M15 LISM and IVC maps are
typically comparable to or higher than the values found at similar scales in
previous studies of interstellar Na I structure toward binary stars. The
physical implications of the small and larger-scale Na I features observed in
the M15 maps are discussed in terms of variations in the H I column density as
well as in the Na ionization equilibrium.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter
Atomic Diagnostics of X-ray Irradiated Protoplanetary Disks
We study atomic line diagnostics of the inner regions of protoplanetary disks
with our model of X-ray irradiated disk atmospheres which was previously used
to predict observable levels of the NeII and NeIII fine-structure transitions
at 12.81 and 15.55mum. We extend the X-ray ionization theory to sulfur and
calculate the fraction of sulfur in S, S+, S2+ and sulfur molecules. For the
D'Alessio generic T Tauri star disk, we find that the SI fine-structure line at
25.55mum is below the detection level of the Spitzer Infrared Spectrometer
(IRS), in large part due to X-ray ionization of atomic S at the top of the
atmosphere and to its incorporation into molecules close to the mid-plane. We
predict that observable fluxes of the SII 6718/6732AA forbidden transitions are
produced in the upper atmosphere at somewhat shallower depths and smaller radii
than the neon fine-structure lines. This and other forbidden line transitions,
such as the OI 6300/6363AA and the CI 9826/9852AA lines, serve as complementary
diagnostics of X-ray irradiated disk atmospheres. We have also analyzed the
potential role of the low-excitation fine-structure lines of CI, CII, and OI,
which should be observable by SOFIA and Herschel.Comment: Accepted by Ap
HyRec: A fast and highly accurate primordial hydrogen and helium recombination code
We present a state-of-the-art primordial recombination code, HyRec, including
all the physical effects that have been shown to significantly affect
recombination. The computation of helium recombination includes simple analytic
treatments of hydrogen continuum opacity in the He I 2 1P - 1 1S line, the He
I] 2 3P - 1 1S line, and treats feedback between these lines within the
on-the-spot approximation. Hydrogen recombination is computed using the
effective multilevel atom method, virtually accounting for an infinite number
of excited states. We account for two-photon transitions from 2s and higher
levels as well as frequency diffusion in Lyman-alpha with a full radiative
transfer calculation. We present a new method to evolve the radiation field
simultaneously with the level populations and the free electron fraction. These
computations are sped up by taking advantage of the particular sparseness
pattern of the equations describing the radiative transfer. The computation
time for a full recombination history is ~2 seconds. This makes our code well
suited for inclusion in Monte Carlo Markov chains for cosmological parameter
estimation from upcoming high-precision cosmic microwave background anisotropy
measurements.Comment: Version accepted by PRD. Numerical integration switches adapted to be
well behaved for a wide range of cosmologies (Sec. V E). HyRec is available
at http://www.tapir.caltech.edu/~yacine/hyrec/hyrec.htm
Nonlinear Evolution of Very Small Scale Cosmological Baryon Perturbations at Recombination
The evolution of baryon density perturbations on very small scales is
investigated. In particular, the nonlinear growth induced by the radiation drag
force from the shear velocity field on larger scales during the recombination
epoch, which is originally proposed by Shaviv in 1998, is studied in detail. It
is found that inclusion of the diffusion term which Shaviv neglected in his
analysis results in rather mild growth whose growth rate is instead
of enormous amplification of Shaviv's original claim since the
diffusion suppresses the growth. The growth factor strongly depends on the
amplitude of the large scale velocity field. The nonlinear growth mechanism is
applied to density perturbations of general adiabatic cold dark matter (CDM)
models. In these models, it has been found in the previous works that the
baryon density perturbations are not completely erased by diffusion damping if
there exists gravitational potential of CDM. With employing the perturbed rate
equation which is derived in this paper, the nonlinear evolution of baryon
density perturbations is investigated. It is found that: (1) The nonlinear
growth is larger for smaller scales. This mechanism only affects the
perturbations whose scales are smaller than , which are
coincident with the stellar scales. (2) The maximum growth factors of baryon
density fluctuations for various COBE normalized CDM models are typically less
than factor 10 for large scale velocity peaks. (3) The growth factor
depends on .Comment: 24 pages, 9 figures, submitted to Ap
- âŠ