1 research outputs found

    Effects of temperature and land-use change on soil organic matter dynamics in a permafrost-affected ecosystem

    Get PDF
    Subarctic ecosystems are among the regions on earth that experience the strongest impact by climate change. As a result of global warming, agricultural centers are shifting poleward into previously non-viable regions of subarctic forests. These subarctic ecosystems are among those predicted to be most strongly impacted by rising global temperatures. Additionally, because agriculture north of 60 degrees latitude has been historically limited, there are few studies which systematically examine the effect of converting subarctic forests for cropland or grassland use on soil carbon. The aim of this thesis was to quantify the effects of land-use change from boreal forest to cropland and grassland on the stocks and composition soil organic carbon. Therefore, three studies were conducted in the Canadian Yukon Territory. First, the effect of soil warming on stocks and fractions of the soil organic matter was quantified by using proximity to a geothermal spring in a subarctic ecosystem as a long-term warming experiment. In the second study, 18 sites covering forest soils as well as adjacent agricultural land were sampled to assess differences in soil organic matter. Included were sites with and without permafrost as well as farms of different age, selected to quantify the influence of permafrost and duration of agricultural use on soil carbon dynamics. The aim of the third study was to measure the effect of land-use change on soil temperature and litter decomposition. Tea bags and temperature sensors were buried in the topsoil (10 cm) and in the subsoil (50 cm) at the same sites as used for the second study and retrieved after two years. This work has shown that deforestation for the purpose of agriculture leads to soil warming and therefore to the loss of near-surface permafrost. Consequently, a large loss of soil organic carbon was observed. Furthermore, the results indicated that the loss of soil organic carbon could be minimised if deforestation is restricted to permafrost-free soils and if the deforestation technique is adapted to minimal disturbance of the topsoil.Subarktische Ökosysteme gehören zu den am stärksten vom Klimawandel betroffenen Region der Erde. Im Zuge der Erderwärmung lässt sich eine Verlagerung der landwirtschaftlichen Zentren in Richtung der Pole beobachten, die zu einer Ausbreitung der Landwirtschaft hinein in subarktische Waldregionen führt. Da Landwirtschaft in Regionen nördlich von 60°N bislang nur eine untergeordnete Rolle spielte, existieren kaum Studien, die den Effekt des Landnutzungswandel von Wald zu Acker und Wald zu Grünland auf den Bodenkohlenstoff systematisch erfasst haben. Ziel der Dissertation war es, die Auswirkungen des Landnutzungswandels von borealem Wald zu Acker und Grünland auf die Vorräte und die Zusammensetzung der organischen Bodensubstanz zu quantifizieren. Den Kern der Dissertation bilden drei Studien, die im kanadischen Yukon Territory durchgeführt wurden. Zunächst wurde der Effekt von Bodenerwärmung auf die Vorräte und Fraktionen der organischen Bodensubstanz quantifiziert, in dem eine geothermale Quelle als Langzeit-Erwärmungsexperiment genutzt wurde. Im Rahmen der zweiten Studie wurden an 18 Standorten sowohl Waldböden, als auch benachbarte landwirtschaftlich genutzte Flächen in Hinblick auf die organische Bodensubstanz beprobt. Im Zuge dessen wurden Flächen mit und ohne Permafrost und Farmen unterschiedlichen Alters ausgewählt, um den Einfluss des Permafrostes auf die Kohlenstoffdynamik zu berücksichtigen und um mögliche Einflüsse der Nutzungsdauer zu quantifizieren. Ziel der dritten Studie war es, den Effekt der Landnutzungsänderung auf die Bodentemperatur und den Streuabbau zu messen. Hierfür wurden an denselben Standorten wie in der zweiten Studie Teebeutel und Temperatursensoren im Oberboden (10 cm) und im Unterboden (50 cm) vergraben und nach zwei Jahren geborgen. Die vorliegende Arbeit hat insgesamt gezeigt, dass Entwaldung für die Etablierung landwirtschaftlicher Flächen zur Erwärmung und somit zum Verlust des oberflächennahen Permafrostes führt, was wiederum große Verluste des Bodenkohlenstoffes nach sich zieht. Ferner fanden sich Hinweise darauf, dass Verluste des Bodenkohlenstoffes durch die Beschränkung der Entwaldung auf permafrostfreie Flächen und durch angepasst Entwaldungstechniken minimiert werden können.Deutsche Forschungsgemeinschaft/Breaking the ice/401106790/E
    corecore