4 research outputs found

    Fluidic haptic interface for mechano-tactile feedback

    Get PDF
    Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electrotactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components. The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multimaterial 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. We present the design, fabrication and validation of the proposed haptic feedback system. Our ∅7 mm feedback actuator is able to transmit a force range between 0.2 N (the median touch threshold) and 2.1 N (the maximum force transmitted by the feedback actuator at a 3 mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2 − 18.49 N

    A Novel Torque-Controlled Hand Exoskeleton to Decode Hand Movements Combining Semg and Fingers Kinematics: A Feasibility Study

    No full text
    This study presents a novel torque-controlled hand exoskeleton, named HandeXos-gamma, which uses a series-elastic actuator (SEA)-based architecture to allow a compliant actuation of the hand joints, and an intention decoding algorithm that combines surface electromyography (sEMG) signals with kinematic information from the exoskeletons encoders. The algorithm was developed offline using data acquired from healthy subjects who performed two grasping movements (lateral and power grasp) under different operating conditions while wearing the exoskeleton. Performance was evaluated for three variants of the algorithm: one using sEMG signals only, another using kinematic data only, and the last combining sEMG and kinematic data. Results indicated that the combination of the two modalities conferred greater algorithm performance than sEMG alone, thus supporting a new paradigm for adaptive robotic hand rehabilitation

    Fluidic haptic interface for mechano-tactile feedback

    No full text
    Notable advancements have been achieved in providing amputees with sensation through invasive and non-invasive haptic feedback systems such as mechano-, vibro-, electro-tactile and hybrid systems. Purely mechanical-driven feedback approaches, however, have been little explored. In this paper, we now created a haptic feedback system that does not require any external power source (such as batteries) or other electronic components (see Fig. 1 ). The system is low-cost, lightweight, adaptable and robust against external impact (such as water). Hence, it will be sustainable in many aspects. We have made use of latest multi-material 3D printing technology (Stratasys Objet500 Connex3) being able to fabricate a soft sensor and a mechano-tactile feedback actuator made of a rubber (TangoBlack Plus) and plastic (VeroClear) material. When forces are applied to the fingertip sensor, fluidic pressure inside the system acts on the membrane of the feedback actuator resulting in mechano-tactile sensation. Our Ø7mm feedback actuator is able to transmit a force range between 0.2N (the median touch threshold) and 2.1N (the maximum force transmitted by the feedback actuator at a 3mm indentation) corresponding to force range exerted to the fingertip sensor of 1.2-18.49N

    Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in greater paris, france. a multicentre cohort study

    No full text
    Background: In the Île-de-France region (henceforth termed Greater Paris), extracorporeal membrane oxygenation (ECMO) for severe acute respiratory distress syndrome (ARDS) was considered early in the COVID-19 pandemic. We report ECMO network organisation and outcomes during the first wave of the pandemic. Methods In this multicentre cohort study, we present an analysis of all adult patients with laboratory-confirmed SARS-CoV-2 infection and severe ARDS requiring ECMO who were admitted to 17 Greater Paris intensive care units between March 8 and June 3, 2020. Central regulation for ECMO indications and pooling of resources were organised for the Greater Paris intensive care units, with six mobile ECMO teams available for the region. Details of complications (including ECMO-related complications, renal replacement therapy, and pulmonary embolism), clinical outcomes, survival status at 90 days after ECMO initiation, and causes of death are reported. Multivariable analysis was used to identify pre-ECMO variables independently associated with 90-day survival after ECMO. Findings The 302 patients included who underwent ECMO had a median age of 52 years (IQR 45−58) and Simplified Acute Physiology Score-II of 40 (31−56), and 235 (78%) of whom were men. 165 (55%) were transferred after cannulation by a mobile ECMO team. Before ECMO, 285 (94%) patients were prone positioned, median driving pressure was 18 cm H2O (14−21), and median ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen was 61 mm Hg (IQR 54−70). During ECMO, 115 (43%) of 270 patients had a major bleeding event, 27 of whom had intracranial haemorrhage; 130 (43%) of 301 patients received renal replacement therapy; and 53 (18%) of 294 had a pulmonary embolism. 138 (46%) patients were alive 90 days after ECMO. The most common causes of death were multiorgan failure (53 [18%] patients) and septic shock (47 [16%] patients). Shorter time between intubation and ECMO (odds ratio 0·91 [95% CI 0·84−0·99] per day decrease), younger age (2·89 [1·41−5·93] for ≤48 years and 2·01 [1·01−3·99] for 49–56 years vs ≥57 years), lower pre-ECMO renal component of the Sequential Organ Failure Assessment score (0·67, 0·55−0·83 per point increase), and treatment in centres managing at least 30 venovenous ECMO cases annually (2·98 [1·46–6·04]) were independently associated with improved 90-day survival. There was no significant difference in survival between patients who had mobile and on-site ECMO initiation. Interpretation Beyond associations with similar factors to those reported on ECMO for non-COVID-19 ARDS, 90-day survival among ECMO-assisted patients with COVID-19 was strongly associated with a centre's experience in venovenous ECMO during the previous year. Early ECMO management in centres with a high venovenous ECMO case volume should be advocated, by applying centralisation and regulation of ECMO indications, which should also help to prevent a shortage of resources
    corecore