14 research outputs found

    Progressive and Lasting Amplilfication of Accumbal Nicotine-Seeking Neural Signals

    Get PDF
    Although neuroadaptations in the nucleus accumbens (NAc) are thought to contribute to nicotine addiction, little is known about the chronic effects of nicotine on NAc neuronal activity. In the present experiment, rats were exposed to a 23 d period of nicotine selfadministration (SA), a 30 d abstinence period, and a 7 d period of reexposure to SA. Chronic electrophysiological procedures were used to record the activity of individual NAc neurons on the 3rd and 23rd days of initial SA and on the 1st, 3rd, and 7th days of reexposure. Between-session comparisons showed that NAc neurons exhibit two patterns of plasticity under the present experimental conditions. First, phasic-increase firing patterns time-locked to the nicotine-reinforced lever press do not change during initial SA, but then show increases in prevalence and amplitude after abstinence, which persist during reexposure. Second, for neurons that show no phasic response time-locked to the nicotine-reinforced lever press, average baseline and SA firing rates decrease during initial SA, return to normal during abstinence, and decrease again during reexposure. As a combined consequence of the two types of neurophysiological plasticity, average firing rate of NAc neurons at the time of nicotine-directed behavior undergoes a progressive and persistent net amplification, across the successive stages of SA, abstinence, and reexposure. This net increase in NAc firing at the time of nicotine-directed behavior occurs in association with an increase in animals' motivation to seek nicotine. The adaptations that occur in nicotine-exposed animals do not occur in animals exposed to sucrose. The NAc neurophysiological plasticity potentially contributes to compulsive tobacco use. Copyright © 2010 the authors

    Varenicline effects on cocaine self-administration and reinstatement behavior.

    No full text
    International audienceThis study tested the effects of the nicotine addiction treatment varenicline on cocaine self administration (SA) and reinstatement. In one SA experiment, rats were trained to self-administer cocaine (0.75 mg/kg/infusion). Thereafter, daily SA sessions continued as before except that every fourth session was preceded by a presession injection of varenicline (0.0, 0.3, 1.0 and 2.0 mg/kg, SC, 50-min presession). In three reinstatement experiments, animals were exposed sequentially to SA training, extinction training, and several reinstatement test sessions. In two of the reinstatement experiments, cocaine-seeking was reinstated by presentation of cocaine-predictive cues at the onset of the test session (cue reinstatement). In a third reinstatement experiment, cocaine-seeking was reinstated by a presession injection of cocaine (drug reinstatement). Each reinstatement session was preceded by an injection of either vehicle or varenicline (dose range of 0.1-2.0 mg/kg). The SA and reinstatement experiments showed that low-dose varenicline decreases reinstatement behavior, without significantly affecting cocaine SA. In contrast, high-dose varenicline increases reinstatement of cocaine-directed behavior and decreases cocaine SA. A control study showed that sucrose-directed behavior is unaltered by varenicline. On the basis of these findings, low-varenicline doses might decrease relapse in cocaine-addicted individuals, but high doses of varenicline might have the opposite effect

    Neurophysiology of Drug Reward.

    No full text
    International audienc

    Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions.

    No full text
    International audienceBACKGROUND:Cocaine addiction is characterized by a progressive increase in drug intake and a persistent craving for the drug during prolonged abstinence. Whether these two prominent features of cocaine addiction are related to each other and are mediated by similar or different neuronal processes is currently unknown.METHODS:Rats were first allowed to self-administer cocaine under long-access (6-hour) conditions to induce escalation of cocaine intake. Self-administration sessions were designed to measure both drug seeking and drug taking. After escalation, rats underwent a 1-month period of forced abstinence after which they were re-exposed to cocaine to induce re-escalation of cocaine intake. In vivo electrophysiologic recordings were conducted in the core and shell subregions of the nucleus accumbens (NAc) during cocaine intake escalation, after abstinence and during re-escalation.RESULTS:After abstinence, escalated levels of cocaine taking decreased toward pre-escalation levels, whereas cocaine seeking increased persistently. These opposite postabstinence changes were uncorrelated. At the neuronal level, the postabstinence decrease in cocaine taking was correlated with a normalization of depressed neuronal activity in the NAc shell that had developed during escalation of cocaine intake. In contrast, the incubation-like increase in cocaine seeking was selectively correlated with a persistent increase in the proportion of neurons in the NAc core that phasically fire during cocaine seeking.CONCLUSIONS:These findings show that cocaine taking and cocaine seeking evolve differently during abstinence from extended drug use and depend on dissociable neuronal processes in different subregions of the nucleus accumbens

    Orbitofrontal and insular cortex: neural responses to cocaine-associated cues and cocaine self-administration.

    No full text
    International audienceBased on neuro-imaging studies in cocaine-addicted humans, it is hypothesized that increases in neural activity within several regions of the prefrontal cortex contribute to cue-induced cocaine seeking and cocaine-induced compulsive drug self-administration. However, electrophysiological tests of these hypotheses are lacking. In the present study, animals were trained to self-administer cocaine (0.75 mg/kg) for 14 days. On the 14th day, we conducted electrophysiological recordings of lateral orbitofrontal (LO) and ventral anterior insula (AIV) neurons. A subset of the combined population of recorded neurons showed a change in firing rate in association with one or more of the following discrete events: (1) presentation of a discriminative stimulus that signaled the onset of the self-administration session, (2) occurrence of the first cocaine-directed operant response, (3) occurrence of a cocaine-reinforced press, and (4) presentation of cues normally paired with delivery of the cocaine reinforcer. The majority of the stimulus- and response-related changes in firing involved a brief increase in firing during the stimulus and response event, respectively. In addition to these event-specific responses, approximately half of the recorded neurons exhibited a sustained change in average firing (i.e., discharges per 30-s bin) during the cocaine self-administration session, relative to average firing during a presession, drug-free period (referred to as session changes). The prevalence of session-increases and decreases were not significantly different. These and other findings are discussed in relation to hypotheses about cue-evoked and cocaine-maintained cocaine-directed behavior

    fMRI response in the medial prefrontal cortex predicts cocaine but not sucrose self-administration history.

    No full text
    International audienceRepeated cocaine exposure induces long-lasting neuroadaptations that alter subsequent responsiveness to the drug. However, systems-level investigation of these neuroplastic consequences is limited. We employed a rodent model of drug addiction to investigate neuroadaptations associated with prolonged forced abstinence after long-term cocaine self-administration (SA). Since natural rewards also activate the mesolimbic reward system in a partially overlapping fashion as cocaine, our design also included a sucrose SA group. Rats were trained to self-administer cocaine or sucrose using a fixed-ratio one, long-access schedule (6 h/day for 20 days). A third group of naïve, sedentary rats served as a negative control. After 30 days of abstinence, the reactivity of the reward system was assessed with functional magnetic resonance imaging (fMRI) following an intravenous cocaine injection challenge. A strong positive fMRI response, as measured by fractional cerebral blood volume changes relative to baseline (CBV%), was seen in the sedentary control group in such cortico-limbic regions as medial prefrontal cortex and anterior cingulate cortex. In contrast, both the cocaine and sucrose SA groups demonstrated a very similar initial negative fMRI response followed by an attenuated positive response. The magnitude of the mPFC response was significantly correlated with the total amount of reinforcer intake during the training sessions for the cocaine SA but not for the sucrose SA group. Given that the two SA groups had identical histories of operant training and handling, this region-specific group difference revealed by regression analysis may reflect the development of neuroadaptive mechanisms specifically related to the emergence of addiction-like behavior that occurs only in cocaine SA animals

    Neurons in hippocampal afferent zones of rat striatum parse routes into multi-pace segments during maze navigation.

    No full text
    International audienceHippocampal 'place' neurons discharge when rats occupy specific regions within an environment. This finding is a cornerstone of the theory of the hippocampus as a cognitive map of space. But for navigation, representations of current position must be implemented by signals concerning where to go next, and how to get there. In recordings in hippocampal output structures associated with the motor system (nucleus accumbens and ventromedial caudate nucleus) in rats solving a plus-maze, neurons fired continuously from the moment the rat left one location until it arrived at the next goal site, or at an intermediate place, such as the maze centre. While other studies have shown discharges during reward approach behaviours, this is the first demonstration of activity corresponding to the parsing of complex routes into sequences of movements between landmarks, similar to the lists of instructions we often employ to communicate directions to follow between points on a map. As these cells fired during a series of several paces or re-orientation movements, perhaps this is homologous to 'chunking'. The temporal overlaps in the activity profiles of the individual neurons provide a possible substrate to successively trigger movements required to arrive at the goal. These hippocampally informed, and in some cases, spatially selective responses support the view of the ventral striatum as an interface between limbic and motor systems, permitting contextual representations to have an impact on fundamental action sequences for goal-directed behaviour
    corecore