428 research outputs found

    Neutron Beam Effects on Spin Exchange Polarized He-3

    Full text link
    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal-spin-exchange polarized He-3 cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable He-3 polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at LANSCE and ILL. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as the square root of the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the recombination-limited ion concentration, but is much larger than expected from earlier work.Comment: submitted to Physical Review Letter

    Parity Violation in Neutron Resonances of Palladium

    Full text link
    Parity violation in p-wave neutron resonances of the palladium isotopes 104, 105, 106, and 108 has been measured by transmission of a longitudinally polarized neutron beam through a natural palladium target. The measurements were performed at the pulsed spallation neutron source of Los Alamos Neutron Science Center. The rms weak interaction matrix elements and the corresponding spreading widths were determined for 104 Pd, 105 Pd, and 106 P

    Comment on ``Measurement of the 3^3He mass diffusion coefficient in superfluid 4^4He over the 0.45--0.95 K temperature range

    Full text link
    The role of 3He-3He collisions in our diffusion experiment is addressed and shown to not be relevant to the measurement of 3He diffusion against phonons in superfluid helium.Comment: Two pages, in Europhysics Letters forma

    Neutron Resonance Spectroscopy of 103Rh from 30 eV to 2 keV

    Full text link
    Neutron resonances in 103Rh have been measured for neutron energies from 30 to 2000 eV using the time-of-flight method and the (n,γ) reaction. The rhodium resonance spectroscopy is essential for the analysis of parity violation measurements recently performed on neutron resonances in 103Rh. Neutron scattering and radiative widths were determined, and orbital angular momentum assignments made with a Bayesian analysis. The s-wave and p-wave strength functions and average level spacings were determined

    Parity Violation in Neutron Resonances of 103Rh

    Full text link
    Parity nonconservation (PNC) was studied in p-wave neutron resonances of 103Rh in the neutron energy range 30 to 490 eV. The helicity dependence of the neutron total cross section of rhodium was determined by capture measurements with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at the Los Alamos National Laboratory. A total of 32 p-wave resonances were studied and statistically significant longitudinal asymmetries were observed for resonances at En=44.5, 110.8, 321.6, and 432.9 eV. A statistical analysis treating the PNC matrix elements as random variables yields a weak spreading widthΓw=(1.42-0.59+1.21)×10-7eV

    Neutron Resonance Spectroscopy of 104Pd, 105Pd, and 110Pd

    Full text link
    We have measured neutron resonances in the palladium isotopes 104, 105, and 110 for neutron energies from 1 to 2100 eV. Many new p-wave resonances have been observed. Their neutron widths and, in several cases, the radiative widths were measured. The average level spacings and the s-wave and p-wave neutron strength functions were determined. The time-of-flight method was used for both neutron total cross section measurements and total (n,γ) reaction yield measurements at the pulsed spallation neutron source of Los Alamos Neutron Science Center. Well established resonance spectroscopy for these isotopes is essential for the analysis of parity violation data that were recently measured in palladium

    Neutron Resonance Spectroscopy of 106Pd, and 108Pd from 20–2000 eV

    Full text link
    Parity nonconserving asymmetries have been measured in p-wave resonances of 106Pd and 108Pd. The data analysis requires knowledge of the neutron resonance parameters. Transmission and capture γ-ray yields were measured for En=20–2000 eV with the time-of-flight method at the Los Alamos Neutron Science Center (LANSCE). A total of 28 resonances in 106Pd and 32 resonances in 108Pd were studied. The resonance parameters for 106Pd are new for all except one resonance. In 108Pd six new resonances were observed and the precision improved for many of the resonance parameters. A Bayesian analysis was used to assign orbital angular momentum for the resonances studied

    Parity Nonconservation in 106Pd and 108Pd Neutron Resonances

    Full text link
    Parity nonconservation (PNC) has been studied in the neutron p-wave resonances of 106Pd and 108Pd in the energy range of 20 to 2000 eV. Longitudinal asymmetries in p-wave capture cross sections are measured using longitudinally polarized neutrons incident on ∼20-g metal-powder targets at LANSCE. A CsI γ-ray detector array measures capture cross section asymmetries as a function of neutron energy which is determined by the neutron time-of-flight method. A total of 21 p-wave resonances in 106Pd and 21 p-wave resonances in 108Pd were studied. One statistically significant PNC effect was observed in106Pd, and no effects were observed in 108Pd. For 106Pd a weak spreading width of Γw=34-28+47×10-7 eV was obtained. For 108Pd an upper limit on the weak spreading width of Γw\u3c12×10-7 eV was determined at the 68% confidence level
    • …
    corecore