13 research outputs found

    Recognition of mycobacterial antigens by conventional and unconventional human t-cells

    Get PDF
    Human T-cells play a major role in controlling and clearing Mycobacterial infections. The adaptive immune system deploys a complex network of specialised T-cell subsets in order to tailor an optimum immune response. Two categories of T-cells have been described that are characterised by the ligands they recognise: “conventional” T-cells (polymorphic, HLA-restricted, peptide-specific) and “unconventional” T-cells (non-polymorphic, restricted by HLA-like molecules, non-peptide-specific). Both T-cell categories were shown to be important for the elimination of cells infected with Mycobacterium tuberculosis (M. tuberculosis) and their role, specificities and functionalities are under active investigation in order to develop optimum vaccination strategies. A large interest in unconventional T-cells, such as MR1-restricted MAITs or CD1-specific T-cells, and their role in mycobacterial infections has recently arisen. I initiated my studies by dissecting T-cell responses generated during direct ex vivo boosting of PBMCs with antigen presenting cells that had phagocytosed Mycobacterium smegmatis (M. smegmatis). M. smegmatis is a non-pathogenic bacterium and is mainly eliminated by the innate immune system. However, T-cells might respond to M. smegmatis antigens and therefore play a role in clearing the pathogen. Using polychromatic flow cytometry, I successfully identified major CD3+ conventional and unconventional M. smegmatis-specific T-cell populations and evaluated their respective frequencies and distribution. The identification of a significant frequency of M. smegmatis-specific unconventional MAITs pushed me to further analyse the specificity of this interesting T-cell subset. At the time of my studies, the ligand(s) presented by MR1 to MAITs were still undiscovered. However, structural models of MR1 groove moiety provided evidences that MR1 could potentially present peptides to MAITs. Therefore, I attempted to identify the molecular and cellular mechanisms by which an M. tuberculosis-specific MAIT clone recognises peptide loaded on MR1 and to refold this MHC-like protein. Vaccination strategies have been mainly focusing on targeting CD8 T-cells, known to be essential for the host defence against mycobacterial infections. Therefore a huge effort is made to discover new immunodominant mycobacterial epitopes. Collaborators isolated the HLA-A*0201-restricted D454 T-cell clone specific to the LLDAHIPQL epitope derived from the highly immunogenic Esx-G protein. The LLDAHIPQL sequence is conserved across mycobacterial species thus offering potential for pan-mycobacterial vaccination. I aimed at proving that D454 TCR binds to HLA-A*0201-LLDAHIPQL. I successfully obtained an HLA-A*0201-LLDAHIPQL crystal structure, the first bacterially-derived HLA-peptide complex, and identified the key mechanisms involved in the molecular recognition of HLA-A*0201-LLDAHIPQL by a conventional TCR

    Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells

    Get PDF
    Fluorochrome-conjugated peptide–major histocompatibility complex (pMHC) multimers are widely used for flow cytometric visualization of antigen-specific T cells. The most common multimers, streptavidin–biotin-based ‘tetramers’, can be manufactured readily in the laboratory. Unfortunately, there are large differences between the threshold of T cell receptor (TCR) affinity required to capture pMHC tetramers from solution and that which is required for T cell activation. This disparity means that tetramers sometimes fail to stain antigen-specific T cells within a sample, an issue that is particularly problematic when staining tumour-specific, autoimmune or MHC class II-restricted T cells, which often display TCRs of low affinity for pMHC. Here, we compared optimized staining with tetramers and dextramers (dextran-based multimers), with the latter carrying greater numbers of both pMHC and fluorochrome per molecule. Most notably, we find that: (i) dextramers stain more brightly than tetramers; (ii) dextramers outperform tetramers when TCR–pMHC affinity is low; (iii) dextramers outperform tetramers with pMHC class II reagents where there is an absence of co-receptor stabilization; and (iv) dextramer sensitivity is enhanced further by specific protein kinase inhibition. Dextramers are compatible with current state-of-the-art flow cytometry platforms and will probably find particular utility in the fields of autoimmunity and cancer immunology

    Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA

    Get PDF
    Tumor-associated peptide–human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface–expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents

    Advances in T-Cell Epitope Engineering

    Get PDF
    T-cells recognize small peptide fragments (p) cradled in multiple major histocompatibility complex (MHC) molecules, termed human leukocyte antigens (HLA) in humans. These membrane-integral pMHC molecules are present on surface of all nucleated cells and allow T-cells to detect aberrant intracellular activity, be this infection with microorganisms or abnormal host biochemistry such as neoplastic division. Scanning of pMHC molecules occurs via the αÎČ T-cell receptor (TCR), a clonotypic, heterodimeric, and membrane-integral molecule on the T-cell surface (Miles et al., 2011a). TCRs engage pMHC molecules via six highly flexible complementarity determining region (CDR) loops and, upon productive docking with a pMHC molecule, the TCR triggers a myriad of intracellular T-cell signaling cascades (Bridgeman et al., 2012). The binding strength (or affinity) between a TCR and a cognate pMHC is relatively weak across known biological systems with monomeric “dwell times” (or half-lives) typically measured in seconds or microseconds at physiological temperatures (Miles et al., 2010; Bridgeman et al., 2012; Smith et al., 2012). This is in contrast to numerous other biological interactions such as antibodies (van der Merwe and Davis, 2003), interleukins (Morton et al., 1994), lipoproteins (Misra et al., 2001), and structural membrane proteins (Matte et al., 2012) which have half-lives measured in hours-to-days. Overall, TCR/pMHC interactions are fleeting even by the dynamic standards of cell surface interactions (van der Merwe and Davis, 2003). The evolutionary rationale for this striking functional divide can only be speculated upon but likely pertains to the primary function of T-cells. T-cells must scan large numbers of pMHC on multiple cells in series in order to identify and eliminate threats quickly. Effective immunity requires that TCR scanning time must be minimal and antigen coverage maximal. Theoretical arguments dictate that maximal immune cover of possible foreign pMHC requires each TCR to recognize huge numbers of different peptides (Mason, 1998; Sewell, 2012). This theory is now supported up by direct experimental evidence that shows a single TCR can cross-recognize millions of pMHC molecules as well or better than the native antigen (Sewell, 2012; Wooldridge et al., 2012; Ekeruche-Makinde et al., 2013). Curiously, this extensive T-cell cross-reactivity is strictly compartmentalized based on peptide length (Ekeruche-Makinde et al., 2013)

    T-cell receptor-optimized peptide skewing of the T-cell repertoire can enhance antigen targeting

    Get PDF
    Altered peptide antigens that enhance T-cell immunogenicity have been used to improve peptide-based vaccination for a range of diseases. Although this strategy can prime T-cell responses of greater magnitude, the efficacy of constituent T-cell clonotypes within the primed population can be poor. To overcome this limitation, we isolated a CD8âș T-cell clone (MEL5) with an enhanced ability to recognize the HLA A*0201-Melan A₂₇₋₃₅ (HLA A*0201-AAGIGILTV) antigen expressed on the surface of malignant melanoma cells. We used combinatorial peptide library screening to design an optimal peptide sequence that enhanced functional activation of the MEL5 clone, but not other CD8âș T-cell clones that recognized HLA A*0201-AAGIGILTV poorly. Structural analysis revealed the potential for new contacts between the MEL5 T-cell receptor and the optimized peptide. Furthermore, the optimized peptide was able to prime CD8+ T-cell populations in peripheral blood mononuclear cell isolates from multiple HLA A*0201âș individuals that were capable of efficient HLA A*0201âș melanoma cell destruction. This proof-of-concept study demonstrates that it is possible to design altered peptide antigens for the selection of superior T-cell clonotypes with enhanced antigen recognition properties

    „Poesie ist das schlechte Gewissen der Literatur“. Durs GrĂŒnbeins Frankfurter Poetikvorlesung

    Get PDF
    Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this ‘ground state’ immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8+ T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment
    corecore