14 research outputs found

    Age-dependent altered proportions in subpopulations of tonsillar lymphocytes

    No full text
    Age-related changes in functional subsets of lymphocytes may influence the potential to build up immune responses. In particular, the capacity of tonsillar lymphocytes to counter infections may be altered during ageing. In order to address this question we investigated the proportional distribution of several subsets of tonsillar T and B cells with regard to ageing. Tonsils were derived from 119 patients between 2 and 65 years of age. Lymphocyte subsets were monitored by three-colour fluorescence of relevant CD markers in flow cytometry. As a general tendency the percentage of CD3+ T cells steadily increased whereas that of CD19+ B cells decreased at the same time. No significant differences were observed between lymphocytes of patients with and without inflammatory history of the tonsils. The percentage of CD8+ T cells declined whereas that of CD4+ T cells increased during the same time span. CD45RA+ T cells increased during the first two decades of life and gradually decreased thereafter. In contrast, CD45RO+ T cells showed an opposite trend. No differences were seen in the population of CD3−/CD56+ natural killer (NK) cells. The mature B cell marker CD40 showed no significant changes during ageing. However, CD38+ B cells, representing B cells of late maturation stages, dramatically declined up to the age of 65. In a similar manner the CD5+ subpopulation of B cells decreased during ageing. Substantial changes in major tonsillar T and B cell populations as shown in this study may have an impact on the ageing process of the immune system

    The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers

    No full text
    Prostate specific antigen (PSA) or human kallikrein 3 (hK3) has long been an effective biomarker for prostate cancer. Now, other members of the tissue kallikrein (KLK) gene family are fast becoming of clinical interest due to their potential as prognostic biomarkers, particularly for hormone dependent cancers. The tissue kallikreins are serine proteases that are encoded by highly conserved multi-gene family clusters in rodents and humans. The rat and mouse loci contain 10 and 25 functional genes, respectively, while the human locus at 19q 13.4 contains 15 genes. The structural organization and size of these genes are similar across species; all genes have 5 coding exons that encode a prepro-enzyme. Although the physiological activators of these zymogens have not been described, in vitro biochemical studies show that some kallikreins can auto-activate and others can activate each other, suggesting that the kallikreins may participate in an enzymatic cascade similar to that of the coagulation cascade. These genes are expressed, to varying degrees, in a wide range of tissues suggesting a functional involvement in a diverse range of physiological and pathophysiological processes. These include roles in normal skin desquamation and psoriatic lesions, tooth development, neural plasticity, and Alzheimer's disease (AD). Of particular interest is the expression of many kallikreins in prostate, ovarian, and breast cancers where they are emerging as useful prognostic indicators of disease progression
    corecore