6 research outputs found
A Guide to Best Practice in Sensory Analysis of Pharmaceutical Formulations
It is well established that treatment regime compliance is linked to the acceptability of a pharmaceutical formulation, and hence also to therapeutic outcomes. To that end, acceptability must be assessed during the development of all pharmaceutical products and especially for those intended for paediatric patients. Although acceptability is a multifaceted concept, poor sensory characteristics often contribute to poor patient acceptability. In particular, poor taste is often cited as a major reason for many patients, especially children, to refuse to take their medicine. It is thus important to understand and, as far as possible, optimise the sensory characteristics and, in particular, the taste/flavour/mouthfeel of the formulation throughout the development of the product. Sensory analysis has been widely practiced, providing objective data concerning the sensory aspects of food and cosmetic products. In this paper, we present proposals concerning how the well-established principles of sensory analysis can best be applied to pharmaceutical product development, allowing objective, scientifically valid, sensory data to be obtained safely. We briefly discuss methodologies that may be helpful in reducing the number of samples that may need to be assessed by human volunteers. However, it is only possible to be sure whether or not the sensory characteristics of a pharmaceutical product are non-aversive to potential users by undertaking sensory assessments in human volunteers. Testing is also required during formulation assessment and to ensure that the sensory characteristics remain acceptable throughout the product shelf life. We provide a risk assessment procedure to aid developers to define where studies are low risk, the results of a survey of European regulators on their views concerning such studies, and detailed guidance concerning the types of sensory studies that can be undertaken at each phase of product development, along with guidance about the practicalities of performing such sensory studies. We hope that this guidance will also lead to the development of internationally agreed standards between industry and regulators concerning how these aspects should be measured and assessed throughout the development process and when writing and evaluating regulatory submissions. Finally, we hope that the guidance herein will help formulators as they seek to develop better medicines for all patients and, in particular, paediatric patients
Responsive Sensory Evaluation to Develop Flexible Taste-Masked Paediatric Primaquine Tablets against Malaria for Low-Resource Settings
Primaquine is an important antimalarial drug for malaria transmission blocking and radical cure, but it is not currently available in child-friendly formulations in appropriate doses. Adult-strength tablets are often crushed and dissolved in water to obtain the required dose, which exposes the drug’s bitter taste. As part of the developing paediatric primaquine (DPP) project, this study adopted a responsive sensory pharmaceutics approach by integrating real-time formulation development and pre-clinical taste assessment to develop palatable, flavour-infused primaquine tablets. A design of experiment (DoE) approach was used to screen different taste-masking agents and excipient blends with trained, expert sensory assessors, with quinine hydrochloride as a model bitter tastant. The taste-masking efficacy of selected prototype formulation blends was validated with naïve assessors using the highest 15 mg primaquine dose. The mean bitterness intensity rating, measured on a discrete 11-point scale, was halved from 7.04 for the unflavoured control to 2.74–3.70 for the formulation blends. Sucralose had the biggest impact on bitterness suppression and improving palatability. Two different flavouring systems have been developed, and their acceptability in paediatric patients will be assessed as part of upcoming validation field clinical trials in Africa
Impact of sampling and DNA extraction methods on skin microbiota assessment
International audienc
Design of a Sensorial-Instrumental Correlation Methodology for a Category of Cosmetic Products: O/W Emulsions
The validation of a cosmetic product is performed by physical analyses and sensory assessment. However, the recruitment of panelists takes a long time and is expensive. Moreover, to apply the product on the skin, microbiology analyses and safety are required but may not be not enough to avoid inflammatory reaction on the skin. The solution could be the substitution of sensory evaluation by instrumental measurement to predict the sensory profile before the panel. For the study, thirteen different skin care emulsions based on their composition and texture were carried out simultaneously by 12 expert panelists with a quantitative descriptive sensory evaluation profile and by rheological and textural methods. A statistical methodology was the applied to find correlation trends between both data sets. The methodology confirmed that the correlation between sensory assessment and instrumental parameters is a good solution to save time. The multiple factor analysis (MFA) showed the correlation between firmness with no visual residue attribute and the cohesion with sticky 1 min, which are evident but this methodology could be used for finding more complex correlations not found in literature
Design of a Sensorial-Instrumental Correlation Methodology for a Category of Cosmetic Products: O/W Emulsions
The validation of a cosmetic product is performed by physical analyses and sensory assessment. However, the recruitment of panelists takes a long time and is expensive. Moreover, to apply the product on the skin, microbiology analyses and safety are required but may not be not enough to avoid inflammatory reaction on the skin. The solution could be the substitution of sensory evaluation by instrumental measurement to predict the sensory profile before the panel. For the study, thirteen different skin care emulsions based on their composition and texture were carried out simultaneously by 12 expert panelists with a quantitative descriptive sensory evaluation profile and by rheological and textural methods. A statistical methodology was the applied to find correlation trends between both data sets. The methodology confirmed that the correlation between sensory assessment and instrumental parameters is a good solution to save time. The multiple factor analysis (MFA) showed the correlation between firmness with no visual residue attribute and the cohesion with sticky 1 min, which are evident but this methodology could be used for finding more complex correlations not found in literature
A Guide to Best Practice in Sensory Analysis of Pharmaceutical Formulations
It is well established that treatment regime compliance is linked to the acceptability of a pharmaceutical formulation, and hence also to therapeutic outcomes. To that end, acceptability must be assessed during the development of all pharmaceutical products and especially for those intended for paediatric patients. Although acceptability is a multifaceted concept, poor sensory characteristics often contribute to poor patient acceptability. In particular, poor taste is often cited as a major reason for many patients, especially children, to refuse to take their medicine. It is thus important to understand and, as far as possible, optimise the sensory characteristics and, in particular, the taste/flavour/mouthfeel of the formulation throughout the development of the product. Sensory analysis has been widely practiced, providing objective data concerning the sensory aspects of food and cosmetic products. In this paper, we present proposals concerning how the well-established principles of sensory analysis can best be applied to pharmaceutical product development, allowing objective, scientifically valid, sensory data to be obtained safely. We briefly discuss methodologies that may be helpful in reducing the number of samples that may need to be assessed by human volunteers. However, it is only possible to be sure whether or not the sensory characteristics of a pharmaceutical product are non-aversive to potential users by undertaking sensory assessments in human volunteers. Testing is also required during formulation assessment and to ensure that the sensory characteristics remain acceptable throughout the product shelf life. We provide a risk assessment procedure to aid developers to define where studies are low risk, the results of a survey of European regulators on their views concerning such studies, and detailed guidance concerning the types of sensory studies that can be undertaken at each phase of product development, along with guidance about the practicalities of performing such sensory studies. We hope that this guidance will also lead to the development of internationally agreed standards between industry and regulators concerning how these aspects should be measured and assessed throughout the development process and when writing and evaluating regulatory submissions. Finally, we hope that the guidance herein will help formulators as they seek to develop better medicines for all patients and, in particular, paediatric patients