6,682 research outputs found

    Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology

    Get PDF
    Local boundary conditions involving field strengths and the normal to the boundary, originally studied in anti-de Sitter space-time, have been recently considered in one-loop quantum cosmology. This paper derives the conditions under which spin-raising operators preserve these local boundary conditions on a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component spinor analysis of the four potentials of the totally symmetric and independent field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in a flat Euclidean background, for which the gauge freedom in the choice of the potentials remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in circulating the file, due to technical problems now fixe

    Twistors, special relativity, conformal symmetry and minimal coupling - a review

    Full text link
    An approach to special relativistic dynamics using the language of spinors and twistors is presented. Exploiting the natural conformally invariant symplectic structure of the twistor space, a model is constructed which describes a relativistic massive, spinning and charged particle, minimally coupled to an external electro-magnetic field. On the two-twistor phase space the relativistic Hamiltonian dynamics is generated by a Poincare scalar function obtained from the classical limit (appropriately defined by us) of the second order, to an external electro-magnetic field minimally coupled, Dirac operator. In the so defined relativistic classical limit there are no Grassman variables. Besides, the arising equation that describes dynamics of the relativistic spin differs significantly from the so called Thomas Bergman Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything else in the papper) on page 23 delete

    Mathematics of random growing interfaces

    Full text link
    We establish a thermodynamic limit and Gaussian fluctuations for the height and surface width of the random interface formed by the deposition of particles on surfaces. The results hold for the standard ballistic deposition model as well as the surface relaxation model in the off-lattice setting. The results are proved with the aid of general limit theorems for stabilizing functionals of marked Poisson point processes.Comment: 12 page

    Supersymmetric Yang-Mills and Supergravity Amplitudes at One Loop

    Full text link
    By applying the known expressions for SYM and SUGRA tree amplitudes, we write generating functions for the NNMHV box coefficients of SYM as well as the MHV, NMHV, and NNMHV box coefficients for SUGRA. The all-multiplicity generating functions utilize covariant, on-shell superspace whereby the contribution from arbitrary external states in the supermultiplet can be extracted by Grassmann operators. In support of the relation between dual Wilson loops and SYM scattering amplitudes at weak coupling, the SYM amplitudes are presented in a manifestly dual superconformal form. We introduce ordered box coefficients for calculating SUGRA quadruple cuts and prove that ordered coefficients generate physical cut amplitudes after summing over permutations of the external legs. The ordered box coefficients are produced by sewing ordered subamplitudes, previously used in applying on-shell recursion relations at tree level. We describe our verification of the results against the literature, and a formula for extracting the contributions from external gluons or gravitons to NNMHV superamplitudes is presented.Comment: 46 pages, 2 figures, additional references and clarifications include

    Conformal Properties of an Evaporating Black Hole Model

    Full text link
    We use a new, conformally-invariant method of analysis to test incomplete null geodesics approaching the singularity in a model of an evaporating black hole for the possibility of extensions of the conformal metric. In general, a local conformal extension is possible from the future but not from the past

    Slices of the Kerr ergosurface

    Full text link
    The intrinsic geometry of the Kerr ergosurface on constant Boyer-Lindquist (BL), Kerr, and Doran time slices is characterized. Unlike the BL slice, which had been previously studied, the other slices (i) do not have conical singularities at the poles (except the Doran slice in the extremal limit), (ii) have finite polar circumference in the extremal limit, and (iii) for sufficiently large spin parameter fail to be isometrically embeddable as a surface of revolution above some latitude. The Doran slice develops an embeddable polar cap for spin parameters greater than about 0.96.Comment: 13 pages, 6 figures; v.2: minor editing for clarification, references added, typos fixed, version published in Classical and Quantum Gravit

    The Seeds of Cosmic structure as a door to New Physics

    Full text link
    There is something missing in our understanding of the origin of the seeds of Cosmic Structuture. The fact that the fluctuation spectrum can be extracted from the inflationary scenario through an analysis that involves quantum field theory in curved space-time, and that it coincides with the observational data has lead to a certain complacency in the community, which prevents the critical analysis of the obscure spots in the derivation. The point is that the inhomogeneity and anisotropy of our universe seem to emerge from an exactly homogeneous and isotropic initial state through processes that do not break those symmetries. This article gives a brief recount of the problems faced by the arguments based on established physics, which comprise the point of view held by a large majority of researchers in the field. The conclusion is that we need some new physics to be able to fully address the problem. The article then exposes one avenue that has been used to address the central issue and elaborates on the degree to which, the new approach makes different predictions from the standard analyses. The approach is inspired on Penrose's proposals that Quantum Gravity might lead to a real, dynamical collapse of the wave function, a process that we argue has the properties needed to extract us from the theoretical impasse described above.Comment: Prepared for the proceedings of the conference NEBXII " Recent Developments in Gravity", Napfio Grece June 2006. LateX, 15 page

    Weak Cosmic Censorship: As Strong as Ever

    Full text link
    Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.Comment: 4 page

    Tunneling Effect Near Weakly Isolated Horizon

    Get PDF
    The tunneling effect near a weakly isolated horizon (WIH) has been studied. By applying the null geodesic method of Parikh and Wilczek and Hamilton-Jacibi method of Angheben et al. to a weakly isolated horizon, we recover the semiclassical emission rate in the tunneling process. We show that the tunneling effect exists in a wide class of spacetimes admitting weakly isolated horizons. The general thermodynamic nature of WIH is then confirmed.Comment: 7 pages, accepted for publication in Physical Review

    Geometric Invariant Measuring the Deviation from Kerr Data

    Full text link
    A geometrical invariant for regular asymptotically Euclidean data for the vacuum Einstein field equations is constructed. This invariant vanishes if and only if the data correspond to a slice of the Kerr black hole spacetime --thus, it provides a measure of the non-Kerr-like behavior of generic data. In order to proceed with the construction of the geometric invariant, we introduce the notion of approximate Killing spinors.Comment: 4 pages, added lemma, changed reference
    corecore