40 research outputs found

    Analysis of cell wall proteins regulated in stem of susceptible and resistant tomato species after inoculation with Ralstonia solanacearum: a proteomic approach

    Get PDF
    Proteomics approach was used to elucidate the molecular interactions taking place at the stem cell wall level when tomato species were inoculated with Ralstonia solanacearum, a causative agent of bacterial wilt. Cell wall proteins from both resistant and susceptible plants before and after the bacterial inoculation were extracted from purified cell wall with salt buffers and separated with 2-D IEF/SDS–PAGE and with 3-D IEF/SDS/SDS–PAGE for basic proteins. The gels stained with colloidal Coomassie revealed varied abundance of protein spots between two species (eight proteins in higher abundance in resistant and six other in susceptible). Moreover, proteins were regulated differentially in response to bacterial inoculation in resistant (seven proteins increased and eight other decreased) as well as in susceptible plants (five proteins elevated and eight other suppressed). Combination of MALDI-TOF/TOF MS and LC-ESI-IonTrap MS/MS lead to the identification of those proteins. Plants responded to pathogen inoculation by elevating the expression of pathogenesis related, other defense related and glycolytic proteins in both species. However, cell wall metabolic proteins in susceptible, and antioxidant, stress related as well as energy metabolism proteins in resistant lines were suppressed. Most of the proteins of the comparative analysis and other randomly picked spots were predicted to have secretion signals except some classical cytosolic proteins

    Transcriptional responses of winter barley to cold indicate nucleosome remodelling as a specific feature of crown tissues

    Get PDF
    We report a series of microarray-based comparisons of gene expression in the leaf and crown of the winter barley cultivar Luxor, following the exposure of young plants to various periods of low (above and below zero) temperatures. A transcriptomic analysis identified genes which were either expressed in both the leaf and crown, or specifically in one or the other. Among the former were genes responsible for calcium and abscisic acid signalling, polyamine synthesis, late embryogenesis abundant proteins and dehydrins. In the crown, the key organ for cereal overwintering, cold treatment induced transient changes in the transcription of nucleosome assembly genes, and especially H2A and HTA11, which have been implicated in cold sensing in Arabidopsis thaliana. In the leaf, various heat-shock proteins were induced. Differences in expression pattern between the crown and leaf were frequent for genes involved in certain pathways responsible for osmolyte production (sucrose and starch, raffinose, γ-aminobutyric acid metabolism), sugar signalling (trehalose metabolism) and secondary metabolism (lignin synthesis). The action of proteins with antifreeze activity, which were markedly induced during hardening, was demonstrated by a depression in the ice nucleation temperature

    Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare

    Get PDF
    Two quantitative trait loci (Fr-H1 and Fr-H2) for frost tolerance (FT) have been discovered on the long arm of chromosome 5H in barley. Two tightly linked groups of CBF genes, known to play a key role in the FT regulatory network in A. thaliana, have been found to co-segregate with Fr-H2. Here, we investigate the allelic variations of four barley CBF genes (HvCbf3, HvCbf6, HvCbf9 and HvCbf14) in a panel of European cultivars, landraces and H. spontaneum accessions. In the cultivars a reduction of nucleotide and haplotype diversities in CBFs compared with the landraces and the wild ancestor H. spontaneum, was evident. In particular, in cultivars the loss of HvCbf9 genetic variants was higher compared to other sequences. In order to verify if the pattern of CBF genetic variants correlated with the level of FT, an association procedure was adopted. The pairwise analysis of linkage disequilibrium (LD) among the genetic variants in four CBF genes was computed to evaluate the resolution of the association procedure. The pairwise plotting revealed a low level of LD in cultivated varieties, despite the tight physical linkage of CBF genes analysed. A structured association procedure based on a general liner model was implemented, including the variants in CBFs, of Vrn-H1, and of two reference genes not involved in FT (α-Amy1 and Gapdh) and considering the phenotypic data for FT. Association analysis recovered two nucleotide variants of HvCbf14 and one nucleotide variant of Vrn-H1 as statistically associated to FT
    corecore