765 research outputs found

    Leveraging on past investment in understanding the immunology of COVID-19 – the South African experience.

    Get PDF
    Significance:The COVID-19 pandemic, and in particular the emergence of viral variants, resulted in an enormous global public health crisis. South African scientists, with a long history of studying viral evolution and antibody responses, were well positioned to pivot their research to focus on SARS-CoV-2. Using the expertise and infrastructure developed over decades for HIV vaccine research, South Africa took a leadership role in studying the antibody response elicited by SARS-CoV-2 infection and vaccination. We describe key scientific outcomes of those studies, and the drivers of a successful national response

    Optimal immunization cocktails can promote induction of broadly neutralizing Abs against highly mutable pathogens

    Get PDF
    Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs

    Young and Early Career Investigators: Report from a Global HIV Vaccine Enterprise Working Group

    Get PDF
    The scientific challenges facing HIV-1 vaccine development are unprecedented in the history of vaccinology. As a result, investigators, funders, and other stakeholders generally agree that “game-changing” ideas are required. While innovation can certainly arise from investigators at all career stages, young and early-career investigators, defined as those under 40 years of age or within 10 years of their final degree or clinical training, are especially key contributors of novel and transformative ideas. Young and early-career investigators bring energy, enthusiasm, and fresh perspectives that are unbiased by prevailing dogma and that are essential to scientific progress

    HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal Responses Targeting Known Epitopes

    Get PDF
    We have previously shown that HIV-1-infected children develop broader and more potent neutralizing antibody responses than adults. This study aimed to determine the antibody specificities in 16 HIV-1 subtype C-infected children who displayed exceptional neutralization breadth on a 22-multisubtype virus panel. All children were antiretroviral treatment (ART) naive with normal CD4 counts despite being infected for a median of 10.1 years with high viral loads. The specificity of broadly neutralizing antibodies (bNAbs) was determined using epitope-ablating mutants, chimeric constructs, and depletion or inhibition of activity with peptides and glycoproteins. We found that bNAbs in children largely targeted previously defined epitopes, including the V2-glycan, V3-glycan, CD4bs, and gp120-gp41 interface. Remarkably, 63% of children had antibodies targeting 2 or 3 and, in one case, 4 of these bNAb epitopes. Longitudinal analysis of plasma from a mother-child pair over 9 years showed that while they both had similar neutralization profiles, the antibody specificities differed. The mother developed antibodies targeting the V2-glycan and CD4bs, whereas bNAb specificities in the child could not be mapped until 6 years, when a minor V2-glycan response appeared. The child also developed high-titer membrane-proximal external region (MPER) binding antibodies not seen in the mother, although these were not a major bNAb specificity. Overall, exceptional neutralization breadth in this group of children may be the result of extended exposure to high antigenic load in the context of an intact immune system, which allowed for the activation of multiple B cell lineages and the generation of polyclonal responses targeting several bNAb epitopes. IMPORTANCE An HIV vaccine is likely to require bNAbs, which have been shown to prevent HIV acquisition in nonhuman primates. Recent evidence suggests that HIV-infected children are inherently better at generating bNAbs than adults. Here, we show that exceptional neutralization breadth in a group of viremic HIV-1 subtype C-infected children was due to the presence of polyclonal bNAb responses. These bNAbs targeted multiple epitopes on the HIV envelope glycoprotein previously defined in adult infection, suggesting that the immature immune system recognizes HIV antigens similarly. Since elicitation of a polyclonal bNAb response is the basis of next-generation HIV envelope vaccines, further studies of how bNAb lineages are stimulated in children is warranted. Furthermore, our findings suggest that children may respond particularly well to vaccines designed to elicit antibodies to multiple bNAb epitopes

    Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans

    Get PDF
    In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex

    3D Printed Franz cells - update on optimization of manufacture and evaluation

    Get PDF
    The evaluation of permeation profiles from cosmetic formulations is considered to be a crucial component in both the development and quality assurance of any new product [1, 2]. Data gathered from such studies allow researchers to assess the viability of delivering different materials to and through biological membranes. To date, laboratory in vitro permeation processes require the use of modified Franz type diffusion cells, conventionally fabricated from glass, which are available in different formats that can be customised to experimental requirements [3]

    Assessment of an LSDV-Vectored Vaccine for Heterologous Prime-Boost Immunizations against HIV

    Get PDF
    The modest protective effects of the RV144 HIV-1 vaccine trial have prompted the further exploration of improved poxvirus vector systems that can yield better immune responses and protection. In this study, a recombinant lumpy skin disease virus (LSDV) expressing HIV-1 CAP256.SU gp150 (Env) and a subtype C mosaic Gag was constructed (LSDVGC5) and compared to the equivalent recombinant modified vaccinia Ankara (MVAGC5). In vitro characterization confirmed that cells infected with recombinant LSDV produced Gag virus-like particles containing Env, and that Env expressed on the surface of the cells infected with LSDV was in a native-like conformation. This candidate HIV-1 vaccine (L) was tested in a rabbit model using different heterologous vaccination regimens, in combination with DNA (D) and MVA (M) vectors expressing the equivalent HIV-1 antigens. The four different vaccination regimens (DDMMLL, DDMLML, DDLMLM, and DDLLMM) all elicited high titers of binding and Tier 1A neutralizing antibodies (NAbs), and some regimens induced Tier 1B NAbs. Furthermore, two rabbits in the DDLMLM group developed low levels of autologous Tier 2 NAbs. The humoral immune responses elicited against HIV-1 Env by the recombinant LSDVGC5 were comparable to those induced by MVAGC5

    Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies

    Get PDF
    Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize \u3e 80 % of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1 - 69 and IGKV3 - 20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206 - CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6 % of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5 3 -fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, andW680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope

    Gender studies and interdisciplinarity

    Get PDF
    In this article we consider the example of gender studies as an interdisciplinary field, and argue that gender studies, and women’s studies, from which gender studies developed, has a distinctive engagement with interdisciplinarity. By thinking about the tra- jectory of women’s studies, feminist thinking and gender studies, we suggest that this has always been an interdisciplinary field of study. We trace both the shifts and continuities in thinking between different iterations of feminist thinking to consider the three core fields of: gender, sex and sexuality; intersectionality and activism; theory and methods. The article aims to open up debate over what the constructive possibilities are of a focus upon gender, and what the relationship is between theory and activism. This article is published as part of an ongoing collection dedicated to interdisciplinary research

    South African HIV-1 Subtype C Transmitted Variants With A Specific V2 Motif Show Higher Dependence On aα4β7 For Replication

    Get PDF
    Background: The integrin aα4β7 mediates the trafficking of immune cells to the gut associated lymphoid tissue (GALT) and is an attachment factor for the HIV gp120 envelope glycoprotein. We developed a viral replication inhibition assay to more clearly evaluate the role of aα4β7 in HIV infection and the contribution of viral and host factors. Results: Replication of 60 HIV-1 subtype C viruses collected over time from 11 individuals in the CAPRISA cohort were partially inhibited by antibodies targeting aα4β7. However, dependence on aα4β7 for replication varied substantially among viral isolates from different individuals as well as over time in some individuals. Among 8 transmitted/founder (T/F) viruses, aα4β7 reactivity was highest for viruses having P/SDI/V tri-peptide binding motifs. Mutation of T/F viruses that had LDI/L motifs to P/SDI/V resulted in greater aα4β7 reactivity, whereas mutating P/SDI/V to LDI/L motifs was associated with reduced aα4β7 binding. P/SDI/V motifs were more common among South African HIV subtype C viruses (35%) compared to subtype C viruses from other regions of Africa
    corecore