236 research outputs found

    Polyclonal and monoclonal antibodies for induction therapy in kidney transplant recipients

    Get PDF
    Background Prolonging kidney transplant survival is an important clinical priority. Induction immunosuppression with antibody therapy is recommended at transplantation and non‐depleting interleukin‐2 receptor monoclonal antibodies (IL2Ra) are considered first line. It is suggested that recipients at high risk of rejection should receive lymphocyte‐depleting antibodies but the relative benefits and harms of the available agents are uncertain. Objectives We aimed to: evaluate the relative and absolute effects of different antibody preparations (except IL2Ra) when used as induction therapy in kidney transplant recipients; determine how the benefits and adverse events vary for each antibody preparation; determine how the benefits and harms vary for different formulations of antibody preparation; and determine whether the benefits and harms vary in specific subgroups of recipients (e.g. children and sensitised recipients). Search methods We searched the Cochrane Kidney and Transplant's Specialised Register to 29 August 2016 through contact with the Information Specialist using search terms relevant to this review. Selection criteria Randomised controlled trials (RCTs) comparing monoclonal or polyclonal antibodies with placebo, no treatment, or other antibody therapy in adults and children who had received a kidney transplant. Data collection and analysis Two authors independently extracted data and assessed risk of bias. Dichotomous outcomes are reported as relative risk (RR) and continuous outcomes as mean difference (MD) together with their 95% confidence intervals (CI). Main results We included 99 studies (269 records; 8956 participants; 33 with contemporary agents). Methodology was incompletely reported in most studies leading to lower confidence in the treatment estimates. Antithymocyte globulin (ATG) prevented acute graft rejection (17 studies: RR 0.63, 95% CI 0.51 to 0.78). The benefits of ATG on graft rejection were similar when used with (12 studies: RR 0.61, 0.49 to 0.76) or without (5 studies: RR 0.65, 0.43 to 0.98) calcineurin inhibitor (CNI) treatment. ATG (with CNI therapy) had uncertain effects on death (3 to 6 months, 3 studies: RR 0.41, 0.13 to 1.22; 1 to 2 years, 5 studies: RR 0.75, 0.27 to 2.06; 5 years, 2 studies: RR 0.94, 0.11 to 7.81) and graft loss (3 to 6 months, 4 studies: RR 0.60, 0.34 to 1.05; 1 to 2 years, 3 studies: RR 0.65, 0.36 to 1.19). The effect of ATG on death‐censored graft loss was uncertain at 1 to 2 years and 5 years. In non‐CNI studies, ATG had uncertain effects on death but reduced death‐censored graft loss (6 studies: RR 0.55, 0.38 to 0.78). When CNI and older non‐CNI studies were combined, a benefit was seen with ATG at 1 to 2 years for both all‐cause graft loss (7 studies: RR 0.71, 0.53 to 0.95) and death‐censored graft loss (8 studies: RR 0.55, 0.39 to 0.77) but not sustained longer term. ATG increased cytomegalovirus (CMV) infection (6 studies: RR 1.55, 1.24 to 1.95), leucopenia (4 studies: RR 3.86, 2.79 to 5.34) and thrombocytopenia (4 studies: RR 2.41, 1.61 to 3.61) but had uncertain effects on delayed graft function, malignancy, post‐transplant lymphoproliferative disorder (PTLD), and new onset diabetes after transplantation (NODAT). Alemtuzumab was compared to ATG in six studies (446 patients) with early steroid withdrawal (ESW) or steroid minimisation. Alemtuzumab plus steroid minimisation reduced acute rejection compared to ATG at one year (4 studies: RR 0.57, 0.35 to 0.93). In the two studies with ESW only in the alemtuzumab arm, the effect of alemtuzumab on acute rejection at 1 year was uncertain compared to ATG (RR 1.27, 0.50 to 3.19). Alemtuzumab had uncertain effects on death (1 year, 2 studies: RR 0.39, 0.06 to 2.42; 2 to 3 years, 3 studies: RR 0.67, 95% CI 0.15 to 2.95), graft loss (1 year, 2 studies: RR 0.39, 0.13 to 1.30; 2 to 3 years, 3 studies: RR 0.98, 95% CI 0.47 to 2.06), and death‐censored graft loss (1 year, 2 studies: RR 0.38, 0.08 to 1.81; 2 to 3 years, 3 studies: RR 2.45, 95% CI 0.67 to 8.97) compared to ATG. Creatinine clearance was lower with alemtuzumab plus ESW at 6 months (2 studies: MD ‐13.35 mL/min, ‐23.91 to ‐2.80) and 2 years (2 studies: MD ‐12.86 mL/min, ‐23.73 to ‐2.00) compared to ATG plus triple maintenance. Across all 6 studies, the effect of alemtuzumab versus ATG was uncertain on all‐cause infection, CMV infection, BK virus infection, malignancy, and PTLD. The effect of alemtuzumab with steroid minimisation on NODAT was uncertain, compared to ATG with steroid maintenance. Alemtuzumab plus ESW compared with triple maintenance without induction therapy had uncertain effects on death and all‐cause graft loss at 1 year, acute rejection at 6 months and 1 year. CMV infection was increased (2 studies: RR 2.28, 1.18 to 4.40). Treatment effects were uncertain for NODAT, thrombocytopenia, and malignancy or PTLD. Rituximab had uncertain effects on death, graft loss, acute rejection and all other adverse outcomes compared to placebo. Authors' conclusions ATG reduces acute rejection but has uncertain effects on death, graft survival, malignancy and NODAT, and increases CMV infection, thrombocytopenia and leucopenia. Given a 45% acute rejection risk without ATG induction, seven patients would need treatment to prevent one having rejection, while incurring an additional patient experiencing CMV disease for every 12 treated. Excluding non‐CNI studies, the risk of rejection was 37% without induction with six patients needing treatment to prevent one having rejection. In the context of steroid minimisation, alemtuzumab prevents acute rejection at 1 year compared to ATG. Eleven patients would require treatment with alemtuzumab to prevent 1 having rejection, assuming a 21% rejection risk with ATG. Triple maintenance without induction therapy compared to alemtuzumab combined with ESW had similar rates of acute rejection but adverse effects including NODAT were poorly documented. Alemtuzumab plus steroid withdrawal would cause one additional patient experiencing CMV disease for every six patients treated compared to no induction and triple maintenance, in the absence of any clinical benefit. Overall, ATG and alemtuzumab decrease acute rejection at a cost of increased CMV disease while patient‐centred outcomes (reduced death or lower toxicity) do not appear to be improved

    Non‐canonical autophagy functions of ATG16L1 in epithelial cells limit lethal infection by influenza A virus

    Get PDF
    Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1-dependent targeting of LC3 to single-membrane, non-autophagosome compartments - referred to as non-canonical autophagy - protects mice from lethal IAV infection. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non-canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non-canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces

    Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    Get PDF
    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 0.39 1.0 mm3 ) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 5 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (53 versus 43 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.The work was supported by the Medical Research Council (UK) and Engineering and Physical Sciences Research Council (P.A.G.), National Institute for Health Research (T.W.C.N.), National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at Oxford University Hospitals NHS Trust and University of Oxford (C.R.R., A.MA.D., C.K., & A.V.), John Fell OUP Fund (C.R.R, C.K.), Clinical Training Fellowship from the Guarantors of Brain (T.D.M.), the Patrick Berthoud Charitable Trust (T.D.M), the Encephalitis Society (T.D.M), and the Wellcome Trust (M.H.

    The Brain Reaction to Viewing Faces of Opposite- and Same-Sex Romantic Partners

    Get PDF
    We pursued our functional magnetic resonance imaging (fMRI) studies of the neural correlates of romantic love in 24 subjects, half of whom were female (6 heterosexual and 6 homosexual) and half male (6 heterosexual and 6 homosexual). We compared the pattern of activity produced in their brains when they viewed the faces of their loved partners with that produced when they viewed the faces of friends of the same sex to whom they were romantically indifferent. The pattern of activation and de-activation was very similar in the brains of males and females, and heterosexuals and homosexuals. We could therefore detect no difference in activation patterns between these groups

    Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    Get PDF
    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 x 0.39 x 1.0 mm³) 7.0T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans

    X Chromosomes Alternate between Two States prior to Random X-Inactivation

    Get PDF
    Early in the development of female mammals, one of the two X chromosomes is silenced in half of cells and the other X chromosome is silenced in the remaining half. The basis of this apparent randomness is not understood. We show that before X-inactivation, the two X chromosomes appear to exist in distinct states that correspond to their fates as the active and inactive X chromosomes. Xist and Tsix, noncoding RNAs that control X chromosome fates upon X-inactivation, also determine the states of the X chromosomes prior to X-inactivation. In wild-type ES cells, X chromosomes switch between states; among the progeny of a single cell, a given X chromosome exhibits each state with equal frequency. We propose a model in which the concerted switching of homologous X chromosomes between mutually exclusive future active and future inactive states provides the basis for the apparently random silencing of one X chromosome in female cells

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    The WD and linker domains of ATG16L1 required for non-canonical autophagy limit lethal influenza A virus infection at epithelial surfaces

    Get PDF
    Phagocytosis and autophagy represent two evolutionarily ancient pathways that provide an important defense against infection by delivering pathogens to lysosomes for degradation. Phagocytosis and autophagy are linked by non-canonical autophagy pathways that conjugate LC3 to endo-lysosome compartments to facilitate phagosome maturation and lysosome fusion. A role for non-canonical autophagy in host defence is implied from cellular studies in vitro, but critically, these studies have rarely been extended to infection of model organisms with intact epithelial barriers and complex immune systems. To address this, we developed a mouse model with specific loss of non-canonical autophagy by removing the WD and linker domain of ATG16L1 required for recruitment of LC3 to endo-lysosome compartments. The mice retain the coiled-coiled domain of ATG16L1 required for conventional autophagy and maintain tissue and immunological homeostasis. Mice with systemic loss of non-canonical autophagy are exquisitely sensitive to low-pathogenicity murine-adapted influenza A virus leading to extensive viral replication throughout the lungs, cytokine dysregulation, fulminant pneumonia and lung inflammation leading to high mortality associated with virulent strains. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung required non-canonical autophagy within epithelial barriers but was independent of phagocytes and other leukocytes. This establishes non-canonical autophagy pathways in epithelial cells as a novel innate defence mechanism that can restrict IAV infection at mucosal surfaces
    corecore