17 research outputs found

    Interleukin-10 Overexpression Promotes Fas-Ligand-Dependent Chronic Macrophage-Mediated Demyelinating Polyneuropathy

    Get PDF
    BACKGROUND:Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome) or chronic forms. Interleukin-10 (IL-10), although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. PRINCIPAL FINDINGS:Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL)-mediated Schwann cell death. SIGNIFICANCE:These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP) and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP) or Guillain-Barré syndrome

    Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse

    No full text
    Aims/hypothesis: Recent observations suggest the involvement of the gastrointestinal tract in the pathogenesis of islet autoimmunity. Thus, the modulation of gut-associated lymphoid tissue may represent a means to affect the natural history of the disease. Oral administration of probiotic bacteria can modulate local and systemic immune responses; consequently, we investigated the effects of oral administration of the probiotic compound VSL#3 on the occurrence of diabetes in non-obese diabetic (NOD) mice. Methods: VSL#3 was administered to female NOD mice three times a week starting from 4 weeks of age. A control group received PBS. Whole blood glucose was measured twice a week. IFN-gamma and IL-10 production/expression was evaluated by ELISA in culture supernatants of mononuclear cells isolated from Peyer's patches and the spleen, and by real-time PCR in the pancreas. Insulitis was characterised by immunohistochemistry and histomorphometric studies. Results: Early oral administration of VSL#3 prevented diabetes development in NOD mice. Protected mice showed reduced insulitis and a decreased rate of beta cell destruction. Prevention was associated with an increased production of IL-10 from Peyer's patches and the spleen and with increased IL-10 expression in the pancreas, where IL-10-positive islet-infiltrating mononuclear cells were detected. The protective effect of VSL#3 was transferable to irradiated mice receiving diabetogenic cells and splenocytes from VSL#3-treated mice. Conclusion: Orally administered VSL#3 prevents autoimmune diabetes and induces immunomodulation by a reduction in insulitis severity. Our results provide a sound rationale for future clinical trials of the primary prevention of type 1 diabetes by oral VSL#3 administration
    corecore