2,941 research outputs found
Assessing movements of three buoy line types using DSTmilli Loggers: Implications for entanglements of bottlenose dolphins in the crab pot fishery
A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observer’s results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages
Building the Full Fermion-Photon Vertex of QED by Imposing Multiplicative Renormalizability of the Schwinger-Dyson Equations for the Fermion and Photon Propagators
In principle, calculation of a full Green's function in any field theory
requires knowledge of the infinite set of multi-point Green's functions, unless
one can find some way of truncating the corresponding Schwinger-Dyson
equations. For the fermion and boson propagators in QED this requires an {\it
ansatz} for the full three point vertex. Here we illustrate how the properties
of gauge invariance, gauge covariance and multiplicative renormalizability
impose severe constraints on this fermion-boson interaction, allowing a
consistent truncation of the propagator equations. We demonstrate how these
conditions imply that the 3-point vertex {\bf in the propagator equations} is
largely determined by the behaviour of the fermion propagator itself and not by
knowledge of the many higher point functions. We give an explicit form for the
fermion-photon vertex, which in the fermion and photon propagator fulfills
these constraints to all orders in leading logarithms for massless QED, and
accords with the weak coupling limit in perturbation theory at . This provides the first attempt to deduce non-perturbative Feynman
rules for strong physics calculations of propagators in massless QED that
ensures a more consistent truncation of the 2-point Schwinger-Dyson equations.
The generalisation to next-to-leading order and masses will be described in a
longer publication.Comment: 57 pages, 3 figure
Analytic perturbation theory in QCD and Schwinger's connection between the beta-function and the spectral density
We argue that a technique called analytic perturbation theory leads to a
well-defined method for analytically continuing the running coupling constant
from the spacelike to the timelike region, which allows us to give a
self-consistent definition of the running coupling constant for timelike
momentum. The corresponding -function is proportional to the spectral
density, which confirms a hypothesis due to Schwinger.Comment: 11 pages, 2 figure
Engaging Science Students with Handheld Technology and Applications by Revisiting the Thayer Method of Teaching and Learning
Organic chemistry instructors integrate handheld technology and applications into course lecture and lab to engage students with tools and techniques students use in the modern world. This technology and applications enable instructors to re-visit the Thayer Method of teaching and learning to create an updated method that works with 21st century students. The Thayer Method is based on the premise that students are willing and capable of making substantial preparation before coming to class and lab in order to maximize efficiency of student-instructor contact time. During this student preparation phase, we engage students with handheld technology and content applications including smart phone viewable course administrative materials; “flashcards” containing basic organic chemistry nomenclature, molecular structures, and chemical reactions; mini-lectures prepared using the Smart Board Airliner Interactive Tablet for upcoming class periods and laboratory technique videos demonstrating tasks they will perform as part of laboratory experimentation. Coupled with a student friendly course text, these handheld applications enable substantial student preparation before class and lab. The method, in conjunction with handheld technology and applications, has been used with positive results in our organic chemistry courses
Superconductivity and Spin Fluctuations in the Electron-Doped Infinitely-Layered High Tc Superconductor SrLaCuO (Tc=42K)
This paper describes the first 63-Cu NMR study of an electron-doped
infinitely-layered high Tc superconductor SrLaCuO (Tc=42K). The
spin dynamics in the normal state above Tc exhibits qualitatively the same
behavior as some hole-doped materials with significantly enhanced spin
fluctuations. Below Tc, we observed no signature of a Hebel-Slichter coherence
peak, suggesting an unconventional nature of the symmetry of the
superconducting order parameter.Comment: Invited Paper to SNS-95 Conference (Spectroscopies on Novel
Superconductors 1995 at Stanford). Also presented at Aspen Winter Conference
on Superconductivity and Grenoble M^2S-HTSC in 199
Mapping from visual acuity to EQ-5D, EQ-5D with vision bolt-on, and VFQ-UI in patients with macular edema in the LEAVO trial
Objectives
Mappings to convert clinical measures to preference-based measures of health such as the EQ-5D-3L are sometimes required in cost-utility analyses. We developed mappings to convert best-corrected visual acuity (BCVA) to the EQ-5D-3L, the EQ-5D-3L with a vision bolt-on (EQ-5D V), and the Visual Functioning Questionnaire-Utility Index (VFQ-UI) in patients with macular edema caused by central retinal vein occlusion.
Methods
We used data from Lucentis, Eylea, Avastin in vein occlusion (LEAVO), which is a phase-3 randomized controlled trial comparing ranibizumab, aflibercept, and bevacizumab in 463 patients with observations at 6 time points. We estimated adjusted limited dependent variable mixture models consisting of 1 to 4 distributions (components) using BCVA in each eye, age, and sex to predict utility within the components and BCVA as a determinant of component membership. We compared model fit using mean error, mean absolute error, root mean square error, Akaike information criteria, Bayesian information criteria, and visual inspection of mean predicted and observed utilities and cumulative distribution functions.
Results
Mean utility scores were 0.82 for the EQ-5D-3L, 0.79 for the EQ-5D V, and 0.88 for the VFQ-UI. The best-fitting models for the EQ-5D and EQ-5D V had 2 components (with means of approximately 0.44 and 0.85), and the best-fitting model for VFQ-UI had 3 components (with means of approximately 0.95, 0.74, and 0.90).
Conclusions
Models with multiple components better predict utility than those with single components. This article provides a valuable addition to the literature, in which previous mappings in visual acuity have been limited to linear regressions, resulting in unfounded assumptions about the distribution of the dependent variable
Magnetic field independence of the spin gap in YBa_2Cu_3O_{7-delta}
We report, for magnetic fields of 0, 8.8, and 14.8 Tesla, measurements of the
temperature dependent ^{63}Cu NMR spin lattice relaxation rate for near
optimally doped YBa_2Cu_3O_{7-delta}, near and above T_c. In sharp contrast
with previous work we find no magnetic field dependence. We discuss
experimental issues arising in measurements of this required precision, and
implications of the experiment regarding issues including the spin or pseudo
gap.Comment: 4 pages, 3 figures, as accepted for publication in Physical Review
Letter
Coulomb suppression of NMR coherence peak in fullerene superconductors
The suppressed NMR coherence peak in the fullerene superconductors is
explained in terms of the dampings in the superconducting state induced by the
Coulomb interaction between conduction electrons. The Coulomb interaction,
modelled in terms of the onsite Hubbard repulsion, is incorporated into the
Eliashberg theory of superconductivity with its frequency dependence considered
self-consistently at all temperatures. The vertex correction is also included
via the method of Nambu. The frequency dependent Coulomb interaction induces
the substantial dampings in the superconducting state and, consequently,
suppresses the anticipated NMR coherence peak of fullerene superconductors as
found experimentally.Comment: 4 pages, Revtex, and 2 figures. Revised and final version to appear
in Phys. Rev. Lett. (1998
- …