112 research outputs found

    Site-Directed Mutations in Tyrosine 195 of Cyclodextrin Glycosyltransferase from Bacillus circulans Strain 251 Affect Activity and Product Specificity

    Get PDF
    Tyrosine 195 is located in the center of the active site cleft of cyclodextrin glycosyltransferase (EC 2.4.1.19) from Bacillus circulans strain 251. Alignment of amino acid sequences of CGTases and alpha-amylases, and the analysis of the binding mode of the substrate analogue acarbose in the active site cleft [Strokopytov, B., et al. (1995) Biochemistry 34, (in press)], suggested that Tyr195 plays an important role in cyclization of oligosaccharides. Tyr195 therefore was replaced with Phe (Y195F), Trp (Y195W), Leu (Y195L), and Gly (Y195G). Mutant proteins were purified and crystallized, and their X-ray structures were determined at 2.5-2.6 Angstrom resolution, allowing a detailed comparison of their biochemical properties and three-dimensional structures with those of the wild-type CGTase protein. The mutant proteins possessed significantly reduced cyclodextrin forming and coupling activities but were not negatively affected in the disproportionation and saccharifying reactions. Also under production process conditions, after a 45 h incubation with a 10% starch solution, the Y195W, Y195L, and Y195G mutants showed a lower overall conversion of starch into cyclodextrins. These mutants produced a considerable amount of linear maltooligosaccharides. The presence of aromatic amino acids (Tyr or Phe) at the Tyr195 position thus appears to be of crucial importance for an efficient cyclization reaction, virtually preventing the formation of linear products. Mass spectrometry of the Y195L reaction mixture, but not that of the other mutants and the wild type, revealed a shift toward the synthesis (in low yields) of larger products, especially of beta- and gamma- (but no alpha-) cyclodextrins and minor amounts of delta-, epsilon-, zeta- and eta-cyclodextrins. This again points to an important role for the residue at position 195 in the formation of cyclic products

    Engineering of Cyclodextrin Product Specificity and pH Optima of the Thermostable Cyclodextrin Glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1

    Get PDF
    The product specificity and pH optimum of the thermostable cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacterium thermosulfurigenes EM1 was engineered using a combination of x-ray crystallography and site-directed mutagenesis. Previously, a crystal soaking experiment with the Bacillus circulans strain 251 β-CGTase had revealed a maltononaose inhibitor bound to the enzyme in an extended conformation. An identical experiment with the CGTase from T. thermosulfurigenes EM1 resulted in a 2.6-Å resolution x-ray structure of a complex with a maltohexaose inhibitor, bound in a different conformation. We hypothesize that the new maltohexaose conformation is related to the enhanced α-cyclodextrin production of the CGTase. The detailed structural information subsequently allowed engineering of the cyclodextrin product specificity of the CGTase from T. thermosulfurigenes EM1 by site-directed mutagenesis. Mutation D371R was aimed at hindering the maltohexaose conformation and resulted in enhanced production of larger size cyclodextrins (β- and γ-CD). Mutation D197H was aimed at stabilization of the new maltohexaose conformation and resulted in increased production of α-CD. Glu258 is involved in catalysis in CGTases as well as α-amylases, and is the proton donor in the first step of the cyclization reaction. Amino acids close to Glu258 in the CGTase from T. thermosulfurigenes EM1 were changed. Phe284 was replaced by Lys and Asn327 by Asp. The mutants showed changes in both the high and low pH slopes of the optimum curve for cyclization and hydrolysis when compared with the wild-type enzyme. This suggests that the pH optimum curve of CGTase is determined only by residue Glu258.

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    The evolution of cyclodextrin glucanotransferase product specificity

    Get PDF
    Cyclodextrin glucanotransferases (CGTases) have attracted major interest from industry due to their unique capacity of forming large quantities of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch. CGTases produce a mixture of cyclodextrins from starch consisting of 6 (α), 7 (β) and 8 (γ) glucose units. In an effort to identify the structural factors contributing to the evolutionary diversification of product specificity amongst this group of enzymes, we selected nine CGTases from both mesophilic, thermophilic and hyperthermophilic organisms for comparative product analysis. These enzymes displayed considerable variation regarding thermostability, initial rates, percentage of substrate conversion and ratio of α-, β- and γ-cyclodextrins formed from starch. Sequence comparison of these CGTases revealed that specific incorporation and/or substitution of amino acids at the substrate binding sites, during the evolutionary progression of these enzymes, resulted in diversification of cyclodextrin product specificity
    corecore