15 research outputs found
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
Complex Aerosol Experiment in Western Siberia (April â October 2013)
The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer â early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively
Complex Aerosol Experiment in Western Siberia (April â October 2013)
The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer â early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively