1,014 research outputs found

    Parallel computing and molecular dynamics of biological membranes

    Get PDF
    In this talk I discuss the general question of the portability of Molecular Dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision arithmetics of the today available APE platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on the possible programming strategies. Liquids can be very satisfactorily simulated using the "systolic" method. For more complex systems, like the biological ones at which we are ultimately interested in, the "domain decomposition" approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of elementary components of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed.Comment: 4 pages LaTeX, 2 figures included, espcrc2.sty require

    Molecular dynamics of C-peptide of ribonuclease A studied by replica-exchange Monte Carlo method and diffusion theory

    Full text link
    Generalized-ensemble algorithm and diffusion theory have been combined in order to compute the dynamical properties monitored by nuclear magnetic resonance experiments from efficient and reliable evaluation of statistical averages. Replica-exchange Monte Carlo simulations have been performed with a C-peptide analogue of ribonuclease A, and Smoluchowski diffusion equations have been applied. A fairly good agreement between the calculated and measured 1^1H-NOESY NMR cross peaks has been obtained. The combination of these advanced and continuously improving statistical tools allows the calculation of a wide variety of dynamical properties routinely obtained by experiments.Comment: 17 pages, 5 figures, (LaTeX); Chemical Physics Letters, in pres

    Ab initio simulations of Cu binding sites in the N-terminal region of PrP

    Get PDF
    The prion protein (PrP) binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH=7.4. Recent experiments show that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square planar coordination. By using first principle ab initio molecular dynamics simulations of the Car-Parrinello type, the Cu coordination mode to the binding sites of the PrP octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)+(wat), Cu(HGGG) and the 2[Cu(HGGG)] dimer are presented. While the presence of a Trp residue and a H2O molecule does not seem to affect the nature of the Cu coordination, high stability of the bond between Cu and the amide Nitrogens of deprotonated Gly's is confirmed in the case of the Cu(HGGG) system. For the more interesting 2[Cu(HGGG)] dimer a dynamically entangled arrangement of the two monomers, with intertwined N-Cu bonds, emerges. This observation is consistent with the highly packed structure seen in experiments at full Cu occupancy.Comment: 4 pages, conference proceedin
    • …
    corecore