69 research outputs found

    Trapping Phosphorus in Runoff with a Phosphorus Removal Structure

    Get PDF
    Reduction of phosphorus (P) inputs to surface waters may decrease eutrophication. Some researchers have proposed fi ltering dissolved P in runoff with P-sorptive byproducts in structures placed in hydrologically active areas with high soil P concentrations. Th e objectives of this study were to construct and monitor a P removal structure in a suburban watershed and test the ability of empirically developed fl ow-through equations to predict structure performance. Steel slag was used as the P sorption material in the P removal structure. Water samples were collected before and after the structure using automatic samples and analyzed for total dissolved P. During the fi rst 5 mo of structure operation, 25% of all dissolved P was removed from rainfall and irrigation events. Phosphorus was removed more effi ciently during low fl ow rate irrigation events with a high retention time than during high fl ow rate rainfall events with a low retention time. Th e six largest fl ow events occurred during storm fl ow and accounted for 75% of the P entering the structure and 54% of the P removed by the structure. Flow-through equations developed for predicting structure performance produced reasonable estimates of structure “lifetime” (16.8 mo). However, the equations overpredicted cumulative P removal. Th is was likely due to diff erences in pH, total Ca and Fe, and alkalinity between the slag used in the structure and the slag used for model development. Th is suggests the need for an overall model that can predict structure performance based on individual material properties

    Trapping Phosphorus in Runoff with a Phosphorus Removal Structure

    Get PDF
    Reduction of phosphorus (P) inputs to surface waters may decrease eutrophication. Some researchers have proposed fi ltering dissolved P in runoff with P-sorptive byproducts in structures placed in hydrologically active areas with high soil P concentrations. Th e objectives of this study were to construct and monitor a P removal structure in a suburban watershed and test the ability of empirically developed fl ow-through equations to predict structure performance. Steel slag was used as the P sorption material in the P removal structure. Water samples were collected before and after the structure using automatic samples and analyzed for total dissolved P. During the fi rst 5 mo of structure operation, 25% of all dissolved P was removed from rainfall and irrigation events. Phosphorus was removed more effi ciently during low fl ow rate irrigation events with a high retention time than during high fl ow rate rainfall events with a low retention time. Th e six largest fl ow events occurred during storm fl ow and accounted for 75% of the P entering the structure and 54% of the P removed by the structure. Flow-through equations developed for predicting structure performance produced reasonable estimates of structure “lifetime” (16.8 mo). However, the equations overpredicted cumulative P removal. Th is was likely due to diff erences in pH, total Ca and Fe, and alkalinity between the slag used in the structure and the slag used for model development. Th is suggests the need for an overall model that can predict structure performance based on individual material properties

    PREFERENTIAL FLOW EFFECTS ON SUBSURFACE CONTAMINANT TRANSPORT IN ALLUVIAL FLOODPLAINS

    Get PDF
    For sorbing contaminants, transport from upland areas to surface water systems is typically considered to be due to surface runoff, with negligible input from subsurface transport assumed. However, certain conditions can lead to an environment where subsurface transport to streams may be significant. The Ozark region, including parts of Oklahoma, Arkansas, and Missouri, is one such environment, characterized by cherty, gravelly soils and gravel bed streams. Previous research identified a preferential flow path (PFP) at an Ozark floodplain along the Barren Fork Creek in northeastern Oklahoma and demonstrated that even a sorbing contaminant, i.e., phosphorus, can be transported in significant quantities through the subsurface. The objective of this research was to investigate the connectivity and floodplain-scale impact of subsurface physical heterogeneity (i.e., PFPs) on contaminant transport in alluvial floodplains in the Ozarks. This research also evaluated a hypothesis that alluvial groundwater acts as a transient storage zone, providing a contaminant sink during high stream flow and a contaminant source during stream baseflow. The floodplain and PFP were mapped with two electrical resistivity imaging techniques. Low-resistivity features (i.e., less than 200 Ω-m) corresponded to topographical depressions on the floodplain surface, which were hypothesized to be relict stream channels with fine sediment (i.e., sand, silt, and clay) and gravel deposits. The mapped PFP, approximately 2 m in depth and 5 to 10 m wide, was a buried gravel bar with electrical resistivity in the range of 1000 to 5000 Ω-m. To investigate the PFP, stream, and groundwater dynamics, a constant-head trench test was installed with a conservative tracer (Rhodamine WT) injected into the PFP at approximately 85 mg/L for 1.5 h. Observation wells were installed along the PFP and throughout the floodplain. Water table elevations were recorded real-time using water level loggers, and water samples were collected throughout the experiment. Results of the experiment demonstrated that stream/aquifer interaction was spatially non-uniform due to floodplain-scale heterogeneity. Transport mechanisms included preferential movement of Rhodamine WT along the PFP, infiltration of Rhodamine WT into the alluvial groundwater system, and then transport in the alluvial system as influenced by the floodplain-scale stream/aquifer dynamics. The electrical resistivity data assisted in predicting the movement of the tracer in the direction of the mapped preferential flow pathway. Spatially variable PFPs, even in the coarse gravel subsoils, affected water level gradients and the distribution of tracer into the shallow groundwater system

    Stage-dependent transient storage of phosphorus in alluvial floodplains

    Get PDF
    Models for contaminant transport in streams commonly idealize transient storage as a well-mixed but immobile system. These transient storage models capture rapid (near-stream) hyporheic storage and transport, but do not account for large-scale, stage-dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large-scale, stage-dependent preferential flow pathways (PFPs). Long-term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P-laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re-entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams’ total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 μm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage-dependent transient storage in alluvial systems

    Stage-dependent transient storage of phosphorus in alluvial floodplains

    Get PDF
    Models for contaminant transport in streams commonly idealize transient storage as a well-mixed but immobile system. These transient storage models capture rapid (near-stream) hyporheic storage and transport, but do not account for large-scale, stage-dependent interaction with the alluvial aquifer. The objective of this research was to document transient storage of phosphorus (P) in coarse gravel alluvium potentially influenced by large-scale, stage-dependent preferential flow pathways (PFPs). Long-term monitoring was performed at floodplain sites adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping which was correlated to hydraulic conductivity data, observation wells were installed both in higher hydraulic conductivity and lower hydraulic conductivity subsoils. Water levels in the wells were monitored over time, and water samples were obtained from the observation wells and the stream to document P concentrations at multiple times during high flow events. Contour plots indicating direction of flow were developed using water table elevation data. Contour plots of total P concentrations showed the alluvial aquifer acting as a transient storage zone, with P-laden stream water heterogeneously entering the aquifer during the passage of a storm pulse, and subsequently re-entering the stream during baseflow conditions. Some groundwater in the alluvial floodplains had total P concentrations that mirrored the streams’ total P concentrations. A detailed analysis of P forms indicated that particulate P (i.e. P attached to particulates greater than 0·45 μm) was a significant portion of the P transport. This research suggests the need for more controlled studies on stage-dependent transient storage in alluvial systems

    Impact of Upadacitinib on laboratory parameters and related adverse events in patients with RA: Integrated data up to 6.5 years

    Get PDF
    Introduction: Upadacitinib (UPA) is a Janus kinase inhibitor that has demonstrated efficacy in moderate-to-severe rheumatoid arthritis (RA) with an acceptable safety profile. We investigated laboratory parameter changes in UPA RA clinical trials. Methods: Pooled data from six randomized trials in the SELECT phase 3 program were included. Key laboratory parameters and safety data were measured for UPA 15 and 30 mg once daily (QD), adalimumab (ADA) 40 mg every other week + methotrexate (MTX), and MTX monotherapy. Exposure-adjusted event rates (EAERs) of adverse events were calculated. Results: A total of 3209 patients receiving UPA 15 mg QD (10 782.7 patient-years [PY]), 1204 patients receiving UPA 30 mg QD (3162.5 PY), 579 patients receiving ADA + MTX (1573.2 PY), and 314 patients receiving MTX monotherapy (865.1 PY) were included, representing up to 6.5 years of total exposure. Decreases in mean levels of hemoglobin, neutrophils, and lymphocytes, and increases in mean levels of liver enzymes and creatinine phosphokinase were observed with UPA, with grade 3 or 4 changes observed in some patients. Mean low- and high-density lipoprotein cholesterol ratios remained stable for patients receiving UPA 15 mg QD. EAERs of anemia and neutropenia occurred at generally consistent rates between UPA and active comparators (3.1–4.3 and 1.7–5.0 events [E]/100 PY across treatment groups, respectively). Rates of hepatic disorder were higher with MTX monotherapy, UPA 15 mg and UPA 30 mg (10.8, 9.7, and 11.0 E/100 PY, respectively) versus ADA + MTX (6.4 E/100 PY). Rates of lymphopenia were highest with MTX monotherapy (3.2 E/100 PY). Treatment discontinuations due to laboratory-related events were rare, occurring in 1.1% and 2.2% of patients treated with UPA 15 and 30 mg QD, respectively. Conclusions: The results of this integrated long-term analysis of laboratory parameters continue to support an acceptable safety profile of UPA 15 mg QD for moderate-to-severe RA

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    Spontaneous Abortion and Preterm Labor and Delivery in Nonhuman Primates: Evidence from a Captive Colony of Chimpanzees (Pan troglodytes)

    Get PDF
    Preterm birth is a leading cause of perinatal mortality, yet the evolutionary history of this obstetrical syndrome is largely unknown in nonhuman primate species.We examined the length of gestation during pregnancies that occurred in a captive chimpanzee colony by inspecting veterinary and behavioral records spanning a total of thirty years. Upon examination of these records we were able to confidently estimate gestation length for 93 of the 97 (96%) pregnancies recorded at the colony. In total, 78 singleton gestations resulted in live birth, and from these pregnancies we estimated the mean gestation length of normal chimpanzee pregnancies to be 228 days, a finding consistent with other published reports. We also calculated that the range of gestation in normal chimpanzee pregnancies is approximately forty days. Of the remaining fifteen pregnancies, only one of the offspring survived, suggesting viability for chimpanzees requires a gestation of approximately 200 days. These fifteen pregnancies constitute spontaneous abortions and preterm deliveries, for which the upper gestational age limit was defined as 2 SD from the mean length of gestation (208 days).The present study documents that preterm birth occurred within our study population of captive chimpanzees. As in humans, pregnancy loss is not uncommon in chimpanzees, In addition, our findings indicate that both humans and chimpanzees show a similar range of normal variation in gestation length, suggesting this was the case at the time of their last common ancestor (LCA). Nevertheless, our data suggest that whereas chimpanzees' normal gestation length is ∼20-30 days after reaching viability, humans' normal gestation length is approximately 50 days beyond the estimated date of viability without medical intervention. Future research using a comparative evolutionary framework should help to clarify the extent to which mechanisms at work in normal and preterm parturition are shared in these species
    corecore