53 research outputs found

    Using a population-based approach to prevent hepatocellular cancer in New South Wales, Australia: effects on health services utilisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Australians born in countries where hepatitis B infection is endemic are 6-12 times more likely to develop hepatocellular cancer (HCC) than Australian-born individuals. However, a program of screening, surveillance and treatment of chronic hepatitis B (CHB) in high risk populations could significantly reduce disease progression and death related to end-stage liver disease and HCC. Consequently we are implementing the <it>B Positive </it>pilot project, aiming to optimise the management of CHB in at-risk populations in south-west Sydney. Program participants receive routine care, enhanced disease surveillance or specialist referral, according to their stage of CHB infection, level of viral load and extent of liver injury. In this paper we examine the program's potential impact on health services utilisation in the study area.</p> <p>Methods</p> <p>Estimated numbers of CHB infections were derived from Australian Bureau of Statistics data and applying estimates of HBV prevalence rates from migrants' countries of birth. These figures were entered into a Markov model of disease progression, constructing a hypothetical cohort of Asian-born adults with CHB infection. We calculated the number of participants in different CHB disease states and estimated the numbers of GP and specialist consultations and liver ultrasound examinations the cohort would require annually over the life of the program.</p> <p>Results</p> <p>Assuming a 25% participation rate among the 5,800 local residents estimated to have chronic hepatitis B infection, approximately 750 people would require routine follow up, 260 enhanced disease surveillance and 210 specialist care during the first year after recruitment is completed. This translates into 5 additional appointments per year for each local GP, 25 for each specialist and 420 additional liver ultrasound examinations.</p> <p>Conclusions</p> <p>While the program will not greatly affect the volume of local GP consultations, it will lead to a significant increase in demand for specialist services. New models of CHB care may be required to aid program implementation and up scaling the program will need to factor in additional demands on health care utilisation in areas of high hepatitis B sero-prevalence.</p

    Reverse immunodynamics : a new method for identifying targets of protective immunity

    Get PDF
    Despite a dramatic increase in our ability to catalogue variation among pathogen genomes, we have made far fewer advances in using this information to identify targets of protective immunity. Epidemiological models predict that strong immune selection can cause antigenic variants to structure into genetically discordant sets of antigenic types (e.g. serotypes). A corollary of this theory is that targets of immunity may be identified by searching for non-overlapping associations of amino acids among co-circulating antigenic variants. We propose a novel population genetics methodology that combines such predictions with phylogenetic analyses to identify genetic loci (epitopes) under strong immune selection. We apply this concept to the AMA-1 protein of the malaria parasite Plasmodium falciparum and find evidence of epitopes among certain regions of low variability which could render them ideal vaccine candidates. The proposed method can be applied to a myriad of multi-strain pathogens for which vast amounts of genetic data has been collected in recent years

    UK and Ireland Joint Advisory Group (JAG) consensus statements for training and certification in diagnostic endoscopic ultrasound (EUS)

    Get PDF
    Background and Aims: International endoscopy societies vary in their approach for credentialing individuals in endoscopic ultrasound (EUS) to enable independent practice; however, there is no consensus in this or its implementation. In 2019, the Joint Advisory Group on GI Endoscopy (JAG) commissioned a working group to examine the evidence relating to this process for EUS. The aim of this was to develop evidence-based recommendations for EUS training and certification in the UK.Methods: Under the oversight of the JAG quality assurance team, a modified Delphi process was conducted which included major stakeholders from the UK and Ireland. A formal literature review was made, initial questions for study were proposed and recommendations for training and certification in EUS were formulated after a rigorous assessment using the Grading of Recommendation Assessment, Development and Evaluation tool and subjected to electronic voting to identify accepted statements. These were peer reviewed by JAG and relevant stakeholder societies before consensus on the final EUS certification pathway was achieved.Results: 39 initial questions were proposed of which 33 were deemed worthy of assessment and finally formed the key recommendations. The statements covered four key domains, such as: definition of competence (13 statements), acquisition of competence (10), assessment of competence (5) and postcertification mentorship (5). Key recommendations include: (1) minimum of 250 hands-on cases before an assessment for competency can be made, (2) attendance at the JAG basic EUS course, (3) completing a minimum of one formative direct observation of procedural skills (DOPS) every 10 cases to allow the learning curve in EUS training to be adequately studied, (4) competent performance in summative DOPS assessments and (5) a period of mentorship over a 12-month period is recommended as minimum to support and mentor new service providers.Conclusions: An evidence-based certification pathway has been commissioned by JAG to support and quality assure EUS training. This will form the basis to improve quality of training and safety standards in EUS in the UK and Ireland.</p

    Fire and biodiversity in the Anthropocene

    Get PDF
    The workshop leading to this paper was funded by the Centre Tecnològic Forestal de Catalunya and the ARC Centre of Excellence for Environmental Decisions. L.T.K. was supported by a Victorian Postdoctoral Research Fellowship (Victorian Government), a Centenary Fellowship (University of Melbourne), and an Australian Research Council Linkage Project Grant (LP150100765). A.R. was supported by the Xunta de Galicia (Postdoctoral Fellowship ED481B2016/084-0) and the Foundation for Science and Technology under the FirESmart project (PCIF/MOG/0083/2017). A.L.S. was supported by a Marie Skłodowska-Curie Individual Fellowship (746191) under the European Union Horizon 2020 Programme for Research and Innovation. L.R. was supported by the Australian Government’s National Environmental Science Program through the Threatened Species Recovery Hub. L.B. was partially supported by the Spanish Government through the INMODES (CGL2014-59742-C2-2-R) and the ERANET-SUMFORESTS project FutureBioEcon (PCIN-2017-052). This research was supported in part by the U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station.BACKGROUND Fire has shaped the diversity of life on Earth for millions of years. Variation in fire regimes continues to be a source of biodiversity across the globe, and many plants, animals, and ecosystems depend on particular temporal and spatial patterns of fire. Although people have been using fire to modify environments for millennia, the combined effects of human activities are now changing patterns of fire at a global scale—to the detriment of human society, biodiversity, and ecosystems. These changes pose a global challenge for understanding how to sustain biodiversity in a new era of fire. We synthesize how changes in fire activity are threatening species with extinction across the globe, highlight forward-looking methods for predicting the combined effects of human drivers and fire on biodiversity, and foreshadow emerging actions and strategies that could revolutionize how society manages fire for biodiversity in the Anthropocene. ADVANCES Our synthesis shows that interactions with anthropogenic drivers such as global climate change, land use, and biotic invasions are transforming fire activity and its impacts on biodiversity. More than 4400 terrestrial and freshwater species from a wide range of taxa and habitats face threats associated with modified fire regimes. Many species are threatened by an increase in fire frequency or intensity, but exclusion of fire in ecosystems that need it can also be harmful. The prominent role of human activity in shaping global ecosystems is the hallmark of the Anthropocene and sets the context in which models and actions must be developed. Advances in predictive modeling deliver new opportunities to couple fire and biodiversity data and to link them with forecasts of multiple drivers including drought, invasive plants, and urban growth. Making these connections also provides an opportunity for new actions that could revolutionize how society manages fire. Emerging actions include reintroduction of mammals that reduce fuels, green fire breaks comprising low-flammability plants, strategically letting wildfires burn under the right conditions, managed evolution of populations aided by new genomics tools, and deployment of rapid response teams to protect biodiversity assets. Indigenous fire stewardship and reinstatement of cultural burning in a modern context will enhance biodiversity and human well-being in many regions of the world. At the same time, international efforts to reduce greenhouse gas emissions are crucial to reduce the risk of extreme fire events that contribute to declines in biodiversity. OUTLOOK Conservation of Earth’s biological diversity will be achieved only by recognition of and response to the critical role of fire in shaping ecosystems. Global changes in fire regimes will continue to amplify interactions between anthropogenic drivers and create difficult trade-offs between environmental and social objectives. Scientific input will be crucial for navigating major decisions about novel and changing ecosystems. Strategic collection of data on fire, biodiversity, and socioeconomic variables will be essential for developing models to capture the feedbacks, tipping points, and regime shifts characteristic of the Anthropocene. New partnerships are also needed to meet the challenges ahead. At the local and regional scale, getting more of the “right” type of fire in landscapes that need it requires new alliances and networks to build and apply knowledge. At the national and global scale, biodiversity conservation will benefit from greater integration of fire into national biodiversity strategies and action plans and in the implementation of international agreements and initiatives such as the UN Convention on Biological Diversity. Placing the increasingly important role of people at the forefront of efforts to understand and adapt to changes in fire regimes is central to these endeavors.PostprintPeer reviewe

    Using a population-based approach to prevent hepatocellular cancer in New South Wales, Australia: effects on health services utilisation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Australians born in countries where hepatitis B infection is endemic are 6-12 times more likely to develop hepatocellular cancer (HCC) than Australian-born individuals. However, a program of screening, surveillance and treatment of chronic hepatitis B (CHB) in high risk populations could significantly reduce disease progression and death related to end-stage liver disease and HCC. Consequently we are implementing the <it>B Positive </it>pilot project, aiming to optimise the management of CHB in at-risk populations in south-west Sydney. Program participants receive routine care, enhanced disease surveillance or specialist referral, according to their stage of CHB infection, level of viral load and extent of liver injury. In this paper we examine the program's potential impact on health services utilisation in the study area.</p> <p>Methods</p> <p>Estimated numbers of CHB infections were derived from Australian Bureau of Statistics data and applying estimates of HBV prevalence rates from migrants' countries of birth. These figures were entered into a Markov model of disease progression, constructing a hypothetical cohort of Asian-born adults with CHB infection. We calculated the number of participants in different CHB disease states and estimated the numbers of GP and specialist consultations and liver ultrasound examinations the cohort would require annually over the life of the program.</p> <p>Results</p> <p>Assuming a 25% participation rate among the 5,800 local residents estimated to have chronic hepatitis B infection, approximately 750 people would require routine follow up, 260 enhanced disease surveillance and 210 specialist care during the first year after recruitment is completed. This translates into 5 additional appointments per year for each local GP, 25 for each specialist and 420 additional liver ultrasound examinations.</p> <p>Conclusions</p> <p>While the program will not greatly affect the volume of local GP consultations, it will lead to a significant increase in demand for specialist services. New models of CHB care may be required to aid program implementation and up scaling the program will need to factor in additional demands on health care utilisation in areas of high hepatitis B sero-prevalence.</p

    Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    Get PDF
    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data source for retrieving the “near surface” moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA), and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7–16% and 40–74% in half-hourly λE and H estimates. These statistics were 5–13% and 10–44% in daily λE and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments

    Ecological implications of fine-scale fire patchiness and severity in tropical savannas of northern Australia

    Get PDF
    Research ArticleUnderstanding fine-scale fire patchiness has significant implications for ecological processes and biodiversity conservation. It can affect local extinction of and recolonisation by relatively immobile fauna and poorly seed-dispersed flora in fire-affected areas. This study assesses fine-scale fire patchiness and severity, and associated implications for biodiversity, in north Australian tropical savanna systems. We used line transects to sample burning patterns of ground layer vegetation in different seasons and vegetation structure types, within the perimeter of 35 fires that occurred between 2009 and 2011. We evaluated two main fire characteristics: patchiness (patch density and mean patch length) and severity (inferred from char and scorch heights, and char and ash proportions). The mean burned area of ground vegetation was 83 % in the early dry season (EDS: May to July) and 93 % in the late dry season (LDS: August to November). LDS fires were less patchy (smaller and fewer unburned patches), and had higher fire severity (higher mean char and scorch heights, and twice the proportion of ash) than EDS fires. Fire patchiness varied among vegetation types, declining under more open canopy structure. The relationship between burned area and fire severity depended on season, being strongly correlated in the EDS and uncorrelated in the LDS. Simulations performed to understand the implications of patchiness on the population dynamics of fire-interval sensitive plant species showed that small amounts of patchiness substantially enhance survival. Our results indicate that the ecological impacts of high frequency fires on firesensitive regional biodiversity elements are likely to be lower than has been predicted from remotely sensed studies that are based on assumptions of homogeneous burninginfo:eu-repo/semantics/publishedVersio

    A New Empirical Approach to Explain the Stock Market Yield: A Combination of Dynamic Panel Estimation and Factor Analysis

    Full text link
    This paper presents an empirical approach that combines competing paradigms of modeling in empirical capital market research. The approach simultaneously estimates the explanatory power of fundamentals, expectations, and historic yield patterns, making it possible to test the extent to which the efficient market hypothesis, fundamental data analysis, and behavioral finance contribute to explaining stock market yield. The core of the approach is a dynamic panel model (Arellano-Bond estimator with an MA restriction of the residuals), complemented with an upstream factor analysis to reduce multicollinearity. Due to the complexity of the data set, a great many parameters that influence the yield can be determined. Highly significant parameter estimates are possible even though the information in the data set is interdependent. For the German stock market (the 160 companies listed in DAX, MDAX, SDAX, and TecDAX), the quarterly yield is analyzed for the period between 2004 and 2009. The model has high explanatory power for the entire observation period, even in light of the fact that the period includes the financial crisis of 2008

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
    corecore