18 research outputs found

    Stability and rheology of dilute TiO2-water nanofluids

    Get PDF
    The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-μm gap by less than 1%

    Deflocculation of kaolin suspensions - The effect of various electrolytes

    Get PDF
    Viscosity reduction of aqueous kaolin suspensions by conventional additives (deflocculation) is studied, using standard viscosity measurements. Apparent viscosity at 100 s-1, and flow behavior index n give complex information about changes of viscosity and flow character of deflocculated suspensions. Several widely used deflocculants - electrolytes and polyelectrolytes - are tested in a wide range of concentrations. The optimum concentrations of these deflocculants, which result in minimum apparent viscosity of suspension, are found. Sedimentation stability of deflocculated suspensions is monitored. Inorganic electrolytes are found to be more effective in viscosity reduction. On the other hand, low-molecular-weight polyelectrolytes produce more stable final suspensions.The support by Czech Science Foundation GACR through the contract P101/12/0585 is gratefully acknowledged

    Stability and rheology of dilute TiO<sub>2</sub>-water nanofluids

    No full text
    Abstract The apparent wall slip (AWS) effect, accompanying the flow of colloidal dispersions in confined geometries, can be an important factor for the applications of nanofluids in heat transfer and microfluidics. In this study, a series of dilute TiO2 aqueous dispersions were prepared and tested for the possible presence of the AWS effect by means of a novel viscometric technique. The nanofluids, prepared from TiO2 rutile or anatase nanopowders by ultrasonic dispersing in water, were stabilized by adjusting the pH to the maximum zeta potential. The resulting stable nanofluid samples were dilute, below 0.7 vol.%. All the samples manifest Newtonian behavior with the fluidities almost unaffected by the presence of the dispersed phase. No case of important slip contribution was detected: the Navier slip coefficient of approximately 2 mm Pa-1 s-1 would affect the apparent fluidity data in a 100-&#956;m gap by less than 1%.</p

    Breaking of rod-shaped model material during compression

    No full text
    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising

    Breaking of rod-shaped model material during compression

    No full text
    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising
    corecore