6 research outputs found
Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases
Astrocytes and neurons in the central nervous system (CNS) interact functionally to mediate processes as diverse as neuroprotection, neurogenesis and synaptogenesis. Moreover, the interaction can be homotypic, implying that astrocyte-derived secreted molecules affect their adjacent neurons optimally vs remote neurons. Astrocytes produce neurotrophic and extracellular matrix molecules that affect neuronal growth, development and survival, synaptic development, stabilization and functioning, and neurogenesis. This new knowledge offers the opportunity of developing astrocyte-derived, secreted proteins as a new class of therapeutics specifically to treat diseases of the CNS. However, primary astrocytes proliferate slowly in vitro, and when induced to immortalize by genetic manipulation, tend to lose their phenotype. These problems have limited the development of astrocytes as sources of potential drug candidates. We have successfully developed a method to induce spontaneous immortalization of astrocytes. Gene expression analysis, karyotyping and activity profiling data show that these spontaneously immortalized type-1 astrocyte cell lines retain the properties of their primary parents. The method is generic, such that cell lines can be prepared from any region of the CNS. To date, a library of 70 cell lines from four regions of the CNS: ventral mesencephalon, striatum, cerebral cortex and hippocampus, has been created. A phenotype-selective neurotrophic factor for dopaminergic neurons has been discovered from one of the cell lines (VMCL1). This mesencephalic astrocyte-derived neurotrophic factor (MANF) is a 20 kD, glycosylated, human secreted protein. Homologs of this protein have been identified in 16 other species including C. elegans. These new developments offer the opportunity of creating a library of astrocyte-derived molecules, and developing the ones with the best therapeutic indices for clinical use.NRC publication: Ye
MANF : A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons
We describe the discovery of a novel, 20 kDa, secreted human protein named mesencephalic astrocyte-derived neurotrophic factor, or MANF. The homologous, native molecule was initially derived from a rat mesencephalic type-1 astrocyte cell line and recombinant MANF subcloned from a cDNA encoding human arginine-rich protein. MANF selectively protects nigral dopaminergic neurons, versus GABAergic or serotonergic neurons. The discovery of MANF marks a more systematic approach in the search for astrocyte-derived, secreted proteins that selectively protect specific neuronal phenotypes. Compared to glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), MANF was more selective in the protection of dopaminergic neurons at lower (0.05\u20130.25 ng/mL) and middle (0.5\u20132.5 ng/mL) concentrations: MANF>GDNF>BDNF. GDNF was more selective at higher concentrations (25\u201350 ng/ml): GDNF>MANF>BDNF. Two domains in MANF of 39-AA and 109-AA respectively, and eight cysteines are conserved from C. elegans to man. MANF is encoded by a 4.3 Kb gene with 4 exons, and is located on the short arm of human chromosome 3. The secondary structure is dominated by \u3b1-helices (47%) and random coils (37%). Studies to determine the localization of MANF in the brains of rat, monkey, and man, as well as the receptor, signaling pathways, and biologically active peptide mimetics are in progress. The selective, neuroprotective effect of MANF for dopaminergic neurons suggests that it may be indicated for the treatment of Parkinson\u2019s disease.DA - 20030609IS - 0895-8696LA - engPT - Journal ArticleRN - 0 (Brain-Derived Neurotrophic Factor)RN - 0 (DNA, Complementary)RN - 0 (MANF protein, human)RN - 0 (Nerve Growth Factors)RN - 0 (Nerve Tissue Proteins)RN - 0 (Neuroprotective Agents)RN - 0 (glial cell-line derived neurotrophic factor)RN - 51-61-6 (Dopamine)SB - IMNRC publication: Ye