15 research outputs found

    Preventive Effects of the Chinese Herbal Medicine Prescription Tangkuei Decoction for Frigid Extremities on Sciatic Neuropathy in Streptozotocin-Induced Diabetic Rats

    Get PDF
    Ischemia and hypoxia are important physiological changes in diabetic peripheral neuropathy (DPN). Chinese herbal medicine prescription Tangkuei Decoction for Frigid Extremities (TDFE) is useful for increasing blood flow. To help determine whether TDFE could protect the peripheral nerves of diabetic patients from the degeneration caused by high blood glucose, TDFE was administered to streptozotocin-induced diabetic rats for 6 or 12 weeks. Plantar thermal stimulation reaction time thresholds, sciatic nerve conduction velocities, and the levels of HIF-1α mRNA, HIF-1α protein, VEGF protein, and the endothelial marker vWF in sciatic nerves were measured at the end of the sixth and twelfth weeks. The thermal thresholds and sciatic nerve conduction velocities of the rats differed after 12 weeks, and the sciatic nerves of the diabetic rats that were given TDFE displayed higher levels of HIF-1α protein, VEGF protein, and HIF-1α mRNA than those of the diabetic model rats. The results at 6 weeks differed from those at 12 weeks. These results suggest that the early preventive application of TDFE effectively delayed the development of DPN and that TDFE increased HIF-1α mRNA levels in the sciatic nerves of diabetic rats through 12 weeks of treatment

    Intercepts allocation for layered defense

    Full text link

    Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly

    Full text link
    The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane–electrode-assembly based electrolysers, are emphasized to shed light on future research directions.</p

    Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production

    Full text link
    Developing efficient seawater-electrolysis system for mass production of hydrogen is highly desirable due to the abundance of seawater. However, continuous electrolysis with seawater feeding boosts the concentration of sodium chloride in the electrolyzer, leading to severe electrode corrosion and chlorine evolution. Herein, the common-ion effect was utilized into the electrolyzer to depress the solubility of NaCl. Specifically, utilization of 6 M NaOH halved the solubility of NaCl in the electrolyte, affording efficient, durable, and sustained seawater electrolysis in NaCl-saturated electrolytes with triple production of H2, O2, and crystalline NaCl. Ternary NiCoFe phosphide was employed as a bifunctional anode and cathode in simulative and Ca/Mg-free seawater-electrolysis systems, which could stably work under 500 mA/cm2 for over 100 h. We attribute the high stability to the increased Na+ concentration, which reduces the concentration of dissolved Cl- in the electrolyte according to the common-ion effect, resulting in crystallization of NaCl, eliminated anode corrosion, and chlorine oxidation during continuous supplementation of Ca/Mg-free seawater to the electrolysis system

    Dynamic chloride ion adsorption on single iridium atom boosts seawater oxidation catalysis

    Full text link
    Abstract Seawater electrolysis offers a renewable, scalable, and economic means for green hydrogen production. However, anode corrosion by Cl- pose great challenges for its commercialization. Herein, different from conventional catalysts designed to repel Cl- adsorption, we develop an atomic Ir catalyst on cobalt iron layered double hydroxide (Ir/CoFe-LDH) to tailor Cl- adsorption and modulate the electronic structure of the Ir active center, thereby establishing a unique Ir-OH/Cl coordination for alkaline seawater electrolysis. Operando characterizations and theoretical calculations unveil the pivotal role of this coordination state to lower OER activation energy by a factor of 1.93. The Ir/CoFe-LDH exhibits a remarkable oxygen evolution reaction activity (202 mV overpotential and TOF = 7.46 O2 s−1) in 6 M NaOH+2.8 M NaCl, superior over Cl--free 6 M NaOH electrolyte (236 mV overpotential and TOF = 1.05 O2 s−1), with 100% catalytic selectivity and stability at high current densities (400-800 mA cm−2) for more than 1,000 h
    corecore