32 research outputs found

    Single-cell sequencing combined with machine learning reveals the mechanism of interaction between epilepsy and stress cardiomyopathy

    Get PDF
    BackgroundEpilepsy is a disorder that can manifest as abnormalities in neurological or physical function. Stress cardiomyopathy is closely associated with neurological stimulation. However, the mechanisms underlying the interrelationship between epilepsy and stress cardiomyopathy are unclear. This paper aims to explore the genetic features and potential molecular mechanisms shared in epilepsy and stress cardiomyopathy.MethodsBy analyzing the epilepsy dataset and stress cardiomyopathy dataset separately, the intersection of the two disease co-expressed differential genes is obtained, the co-expressed differential genes reveal the biological functions, the network is constructed, and the core modules are identified to reveal the interaction mechanism, the co-expressed genes with diagnostic validity are screened by machine learning algorithms, and the co-expressed genes are validated in parallel on the epilepsy single-cell data and the stress cardiomyopathy rat model.ResultsEpilepsy causes stress cardiomyopathy, and its key pathways are Complement and coagulation cascades, HIF-1 signaling pathway, its key co-expressed genes include SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3. The key immune cell subpopulations localized by single-cell data are the T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup.ConclusionWe believe epilepsy causing stress cardiomyopathy results from a multi-gene, multi-pathway combination. We identified the core co-expressed genes (SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3) and the pathways that function in them (Complement and coagulation cascades, HIF-1 signaling pathway, JAK-STAT signaling pathway), and finally localized their key cellular subgroups (T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup). Also, combining cell subpopulations with hypercoagulability as well as sympathetic excitation further narrowed the cell subpopulations of related functions

    Mechanisms of Myocardial Stunning in Stress-Induced Cardiomyopathy

    Get PDF
    Stress-induced cardiomyopathy, in contrast to acute myocardial infarction, is a type of acute heart failure characterized by reversible left ventricular dysfunction. Cardiac imaging primarily reveals left ventricle myocardial stunning, 81.7% of which is apical type. Emotional or psychological stress usually precedes the onset of stress-induced cardiomyopathy, which is increasingly being recognized as a unique neurogenic myocardial stunning disease. To distinguish between acute myocardial infarction and acute viral or auto-immune myocarditis, this review summarizes specific mechanisms of myocardial stunning in stress-induced cardiomyopathy, such as calcium disorders, metabolic alterations, anatomical and histological variations in different parts of the left ventricle, and microvascular dysfunction

    The Role of Sleep Deprivation in Arrhythmias

    Get PDF
    Sleep is essential to the normal psychological and physiological activities of the human body. Increasing evidence indicates that sleep deprivation is associated with the occurrence, development, and poor treatment effects of various arrhythmias. Sleep deprivation affects not only the peripheral nervous system but also the central nervous system, which regulates the occurrence of arrhythmias. In addition, sleep deprivation is associated with apoptotic pathways, mitochondrial energy metabolism disorders, and immune system dysfunction. Although studies increasingly suggest that pathological sleep patterns are associated with various atrial and ventricular arrhythmias, further research is needed to identify specific mechanisms and recommend therapeutic interventions. This review summarizes the findings of sleep deprivation in animal experiments and clinical studies, current challenges, and future research directions in the field of arrhythmias

    Sintering behavior and mechanism of tungsten powders prepared by solution combustion synthesis combined with hydrogen reduction

    No full text
    Nanosized tungsten powders were fabricated by solution combustion synthesis combined with hydrogen reduction. The powder had a size of 20 nm but possessed a large numbers of lattice defects. The fracture surface images at different temperatures show that the as-synthesized tungsten powder could be sintered via a pressureless process to relative density up to 95.78% at 1773 K. Kinetic analysis suggests that grain-boundary diffusion is one of the primary mechanisms of mass transport during the intermediate stage of sintering. The sintering properties are attributed to the ultrafine grain and the high sintering activation caused by the effect of the solution combustion synthesis method. It reveals in detail that the as-synthesized tungsten powder has a lower sintering activation energy compared to commercial nanosized tungsten powder, with a measured hardness of 633 HV

    Research trends in methods for controlling macro-micro motion platforms

    No full text
    With ongoing economic, scientific, and technological developments, the electronic devices used in daily lives are developing toward precision and miniaturization, and so the demand for high-precision manufacturing machinery is expanding. The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform (M3P), which offers high speed, precision, and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components. Therefore, the design of the control system is crucial for the overall precision of the platform; conventional proportional–integral–derivative control cannot meet the system requirements, and so M3Ps are the subject of a growing range of modern control strategies. This paper begins by describing the development history of M3Ps, followed by their platform structure and motion control system components, and then in-depth assessments of the macro, micro, and macro-micro control systems. In addition to examining the advantages and disadvantages of current macro-micro motion control, recent technological breakthroughs are noted. Finally, based on existing problems, future directions for M3P control systems are given, and the present conclusions offer guidelines for future work on M3Ps

    Monitoring System of Transmission Line in Mountainous Area Based on LPWAN

    No full text
    In light of the difficulty of the inspection and maintenance of a transmission line condition monitoring system in remote mountainous areas, this paper proposes a long-term online monitoring scheme based on a low power wide area network (LPWAN). Considering different failure rates, three monitoring periods of transmission lines in mountainous areas are proposed. An online monitoring framework of transmission lines in mountainous areas was designed based on long range radio (LoRa) and a cellular mobile network, and a dynamic group network model of LoRa was established. The multi-objective particle swarm optimization algorithm can be used to optimize the energy and delay of the system, and then the suitable working mode for the three monitoring periods can be obtained. The simulation results showed that the minimum packet loss rate of the system could be less than 1%, the energy consumption of the system was 80% lower than the existing monitoring system, and the service life of the system can reach 15.13 years under the normal failure rate. Compared with the existing schemes, the proposed work shows the advantages of high reliability transmission, low cost and long-term monitoring, which is especially for transmission line monitoring in mountainous areas

    Preparation and Performance of Sintered Fe-2Cu-2Mo-0.8C Materials Containing Different Forms of Molybdenum Powder

    No full text
    Fe-2Cu-2Mo-0.8C powder mixtures were prepared by mixing Fe, Cu and C elemental powders with different forms of Mo-containing powder (pure Mo powder, prealloyed Mo-Fe powder and mechanically alloyed Mo-Fe powder, respectively). The powder mixtures were warm pressed under different pressures and temperatures. Properties of the green compacts and the sintered parts were tested to investigate the effects of the different ways of introducing molybdenum. The test results show that a green density of 7.32 g/cm3 was obtained for Fe-2Cu-2Mo-0.8C powder mixtures containing mechanically alloyed Mo-Fe powders, under a warm compaction pressure of 800 MPa and warm pressing temperature of 120 °C, respectively. The sintered Fe-2Cu-2Mo-0.8C specimens added with mechanically alloyed Mo-Fe powders had a density of 7.31 g/cm3, a hardness of 95 HRB and a tensile strength of 618 MPa, respectively. Compared with the sintered samples, added Mo in the forms of pure Mo and prealloyed Mo-Fe powder, the sintered parts added with mechanically alloyed Mo-Fe powders had more uniform microstructure, better mechanical and wear-resistant properties

    Research on the correlation between three-dimensional morphology and temperature changes in potato slices during drying

    No full text
    Drying is an effective method to reduce potato storage loss. However, potatoes have high porosity with high water content. Shrinkage during drying can lead to folding and cracking of the dried product form. Therefore, this study explored the correlation between the 3D morphology and temperature distribution changes of potato slices during drying, with the aim of providing a reference for the detection of quality changes. An online automatic acquisition device to obtain 3D morphology and temperature information was designed and built. Hot air-drying experiments were conducted on the potato slices. 3D morphology images and temperature images of the potato slices were acquired by 3D and temperature sensors, and the two images were registered using the random sample consensus (RANSAC) algorithm. The region of interest of each image was extracted by algorithms such as threshold segmentation, hole filling and morphological erosion, and the 3D morphology information and temperature information were obtained. The mapping, range and average of each acquisition point were calculated for correlation analysis. Spearman's rank correlation coefficients and Maximum Information Coefficient (MIC) values were selected as measures for the correlation study. The results showed that the Spearman's rank correlation coefficients between average height and average temperature were mostly above 0.7 in absolute value, and the MICs were mostly above 0.9. The average values of the 3D information and temperature information exhibited an extremely strong correlation. This paper gives a new approach to investigate the morphological changes in the drying process by quantifying the relationship between 3D morphology and temperature distribution. This can guide the improvement of potato drying and processing methods

    Photocatalytic-controlled olefin isomerization over WO3–x using low-energy photons up to 625 nm

    No full text
    WO3–x (W-1) was used to achieve controllable photoisomerization of linear olefins without substituents under 625 nm light irradiation. Thermodynamic and kinetic isomers were obtained by regulating the carbon chain length of the olefins. Terminal olefins were converted into isomerized products, and the internal olefin mixtures present in petroleum derivatives were transformed into valuable pure olefin products. Oxygen vacancies (OVs) in W-1 altered the electronic structure of W-1 to improve its light-harvesting ability, which accounted for the high activity of olefin isomerization under light irradiation up to 625 nm. Additionally, OVs on the W-1 surface generated unsaturated W5+ sites that coordinated with olefins for the efficient adsorption and activation of olefins. Mechanistic studies reveal that the in situ formation of surface π-complexes and π-allylic W intermediates originating from the coordination of coordinated unsaturated W5+ sites and olefins ensure high photocatalytic activity and selectivity of W-1 for the photocatalytic isomerization of olefins via a radical mechanism.</p
    corecore