42 research outputs found
Radio-frequency spectroscopy of a strongly interacting spin-orbit coupled Fermi gas
We investigate experimentally and theoretically radio-frequency spectroscopy
and pairing of a spin-orbit-coupled Fermi gas of K atoms near a Feshbach
resonance at G. Experimentally, the integrated spectroscopy is
measured, showing characteristic blue and red shifts in the atomic and
molecular responses, respectively, with increasing spin-orbit coupling.
Theoretically, a smooth transition from atomic to molecular responses in the
momentum-resolved spectroscopy is predicted, with a clear signature of
anisotropic pairing at and below resonance. Our many-body prediction agrees
qualitatively well with the observed spectroscopy near the Feshbach resonance.Comment: 7 pages, 4 figures. Supercedes 1302.055
Improving the Substrate Affinity and Catalytic Efficiency of β-Glucosidase Bgl3A from <i>Talaromyces leycettanus</i> JCM12802 by Rational Design
Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases
High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to D-xylose.
A novel β-xylosidase gene of glycosyl hydrolase (GH) family 3, xyl3A, was identified from the thermophilic fungus Humicola insolens Y1, which is an innocuous and non-toxic fungus that produces a wide variety of GHs. The cDNA of xyl3A, 2334 bp in length, encodes a 777-residue polypeptide containing a putative signal peptide of 19 residues. The gene fragment without the signal peptide-coding sequence was cloned and overexpressed in Pichia pastoris GS115 at a high level of 100 mg/L in 1-L Erlenmeyer flasks without fermentation optimization. Recombinant Xyl3A showed both β-xylosidase and α-arabinfuranosidase activities, but had no hydrolysis capacity towards polysaccharides. It was optimally active at pH 6.0 and 60°C with a specific activity of 11.6 U/mg. It exhibited good stability over pH 4.0-9.0 (incubated at 37°C for 1 h) and at temperatures of 60°C and below, retaining over 80% maximum activity. The enzyme had stronger tolerance to xylose than most fungal GH3 β-xylosidases with a high Ki value of 29 mM, which makes Xyl3A more efficient to produce xylose in fermentation process. Sequential combination of Xyl3A following endoxylanase Xyn11A of the same microbial source showed significant synergistic effects on the degradation of various xylans and deconstructed xylo-oligosaccharides to xylose with high efficiency. Moreover, using pNPX as both the donor and acceptor, Xyl3A exhibited a transxylosylation activity to synthesize pNPX2. All these favorable properties suggest that Xyl3A has good potential applications in the bioconversion of hemicelluloses to biofuels
An integral transform applied to solve the steady heat transfer problem in the half-plane
An integral transform operator U[П(t)= 1/λ ∞∫−∞ П(t)е-iλt dt is
considered to solve the steady heat transfer problem in this paper. The
analytic technique is illustrated to be applicable in the solution of a 1-D
Laplace equation in the half-plane. The results are interesting as well as
potentially useful in the linear heat transfer problems
Etching Rate Enhancement by Shaped Femtosecond Pulse Train Electron Dynamics Control for Microchannels Fabrication in Fused Silica Glass
The dependence of the etching rate on the ultrafast pulse shaping is observed when microchannels are fabricated in fused silica glass using the method of femtosecond laser irradiation followed by chemical etching. In comparison with the conventional femtosecond pulses, the temporally shaped pulse trains can greatly enhance the etching rate under the same processing conditions. The enhancement is mainly attributed to the localized transient electron dynamics control by shaping the ultrafast pulse, resulting in higher photon absorption efficiency and uniform photomodification zone. Furthermore, processing parameters, including pulse delay and pulse energy distribution ratio, have also been investigated to optimize microchannels fabrication
Multi-Scenario Integration Comparison of CMADS and TMPA Datasets for Hydro-Climatic Simulation over Ganjiang River Basin, China
The lack of meteorological observation data limits the hydro-climatic analysis and modeling, especially for the ungauged or data-limited regions, while satellite and reanalysis products can provide potential data sources in these regions. In this study, three daily products, including two satellite products (Tropic Rainfall Measuring Mission Multi-Satellite Precipitation Analysis, TMPA 3B42 and 3B42RT) and one reanalysis product (China Meteorological Assimilation Driving Datasets for the SWAT Model, CMADS), were used to assess the capacity of hydro-climatic simulation based on the statistical method and hydrological model in Ganjiang River Basin (GRB), a humid basin of southern China. CAMDS, TMPA 3B42 and 3B42RT precipitation were evaluated against ground-based observation based on multiple statistical metrics at different temporal scales. The similar evaluation was carried out for CMADS temperature. Then, eight scenarios were constructed into calibrating the Soil and Water Assessment Tool (SWAT) model and simulating streamflow, to assess their capacity in hydrological simulation. The results showed that CMADS data performed better in precipitation estimation than TMPA 3B42 and 3B42RT at daily and monthly scales, while worse at the annual scale. In addition, CMADS can capture the spatial distribution of precipitation well. Moreover, the CMADS daily temperature data agreed well with observations at meteorological stations. For hydrological simulations, streamflow simulation results driven by eight input scenarios obtained acceptable performance according to model evaluation criteria. Compared with the simulation results, the models driven by ground-based observation precipitation obtained the most accurate streamflow simulation results, followed by CMADS, TMPA 3B42 and 3B42RT precipitation. Besides, CMADS temperature can capture the spatial distribution characteristics well and improve the streamflow simulations. This study provides valuable insights for hydro-climatic application of satellite and reanalysis meteorological products in the ungauged or data-limited regions
Opportunities and challenges of interdisciplinarity in river water environmental ethics and integrated river basin management
Abstract This paper examines the ethical issues of water environment in the context of river management in practical engineering and technological applications. In particular, three important issues are discussed in this paper referring to two actual engineering cases in ancient and modern China, that is, the construction of ancient Dujiangyan irrigation project in Sichuan, China, and the modern practice of integrated operation of flood control and pollution prevention in Huai River Basin. The three issues include how to consider the trade‐offs between flood control and irrigation, how to balance flood control and contamination prevention related to sudden water pollution incident, and how to ensure the protection of water environments and ecology in rivers under the grand challenges of natural environmental changes and high‐intensity human activities. Finally, this paper concludes by emphasizing the future development of water environmental ethics and its interdisciplinary integration with modern science & technology in smart river management in China
T790M mutation sensitizes non-small cell lung cancer cells to radiation via suppressing SPOCK1
Background: Approximately 50% of patients harbor the T790M mutation after developing first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance. Evidence has showed the major treatment failure is local relapses and limited metastases. Several studies have demonstrated the value of radiotherapy in metastatic non-small cell lung cancer (NSCLC) with the EGFR T790M mutation after the development of TKI resistance. The aim of this study was to explore the role of radiation in T790M-mutant NSCLC and the value of early radiotherapy for NSCLC with T790M-mediated EGFR-TKI resistance. Methods: Gefitinib-resistant NSCLC cell lines were established via stepwise exposure to increasing concentrations of gefitinib (PC-9-GR). Droplet digital PCR was used to determine the relative T790M subclone abundance. In vitro and in vivo models were established using different mixtures of PC-9-GR and PC-9 cells. Differentially expressed genes were identified using RNA sequencing. Two research models were constructed (salvage and prophylactic radiotherapy) to determine the effects of early radiotherapy on gefitinib-resistant cells. Results: PC-9-GR cells exhibited higher radiosensitivity than PC-9 cells (sensitivity enhancement ratio = 1.5). Salvage radiation reduced the number of T790M-mutant subclones, and the relative T790M abundance was significantly lower than that without radiation at 90 days (10.94% vs. 21.54%). Prophylactic radiation prevented the development of T790M subclones. These results were also confirmed in vivo. qRT-PCR revealed threefold elevation of miR-1243 in PC-9-GR cells, and the increased radiosensitivity of PC-9-GR cells was inhibited when miR-1243 was knocked down. RNA sequencing revealed that SPOCK1 was downregulated in PC-9-GR cells. Interestingly, bioinformatic analysis showed that SPOCK1 was a target gene of miR-1243. SPOCK1 knockdown markedly increased the radiosensitivity of PC-9 cells. Conclusion: Gefitinib-resistant NSCLC with the T790M mutation had higher radiosensitivity than that without the mutation, possibly mediated by SPOCK1. Early radiotherapy can eliminate T790M subclones, providing evidence for the benefit of early local treatment in patients with TKI-resistant NSCLC