20 research outputs found

    Harnessing dislocation motion using an electric field

    Full text link
    Dislocations, line defects in crystalline materials, play an essential role in the mechanical[1,2], electrical[3], optical[4], thermal[5], and phase transition[6] properties of these materials. Dislocation motion, an important mechanism underlying crystal plasticity, is critical for the hardening, processing, and application of a wide range of structural and functional materials[1,7,8]. For decades, the movement of dislocations has been widely observed in crystalline solids under mechanical loading[9-11]. However, the goal of manipulating dislocation motion via a non-mechanical field alone remains elusive. Here, we present real-time observations of dislocation motion controlled solely by an external electric field in single-crystalline zinc sulfide (ZnS). We find that 30{\deg} partial dislocations can move back and forth depending on the direction of the electric field, while 90{\deg} partial dislocations are motionless. We reveal the nonstoichiometric nature of dislocation cores using atomistic imaging and determine their charge characteristics by density functional theory calculations. The glide barriers of charged 30{\deg} partial dislocations, which are lower than those of 90{\deg} partial dislocations, further decrease under an electric field, explaining the experimental observations. This study provides direct evidence of dislocation dynamics under a non-mechanical stimulus and opens up the possibility of modulating dislocation-related properties

    A transducer positioning method for transcranial focused ultrasound treatment of brain tumors

    Get PDF
    PurposeAs a non-invasive method for brain diseases, transcranial focused ultrasound (tFUS) offers higher spatial precision and regulation depth. Due to the altered path and intensity of sonication penetrating the skull, the focus and intensity in the skull are difficult to determine, making the use of ultrasound therapy for cancer treatment experimental and not widely available. The deficiency can be effectively addressed by numerical simulation methods, which enable the optimization of sonication modulation parameters and the determination of precise transducer positioning.MethodsA 3D skull model was established using binarized brain CT images. The selection of the transducer matrix was performed using the radius positioning (RP) method after identifying the intracranial target region. Simulations were performed, encompassing acoustic pressure (AP), acoustic field, and temperature field, in order to provide compelling evidence of the safety of tFUS in sonication-induced thermal effects.ResultsIt was found that the angle of sonication path to the coronal plane obtained at all precision and frequency models did not exceed 10° and 15° to the transverse plane. The results of thermal effects illustrated that the peak temperatures of tFUS were 43.73°C, which did not reach the point of tissue degeneration. Once positioned, tFUS effectively delivers a Full Width at Half Maximum (FWHM) stimulation that targets tumors with diameters of up to 3.72 mm in a one-off. The original precision model showed an attenuation of 24.47 ± 6.13 mm in length and 2.40 ± 1.42 mm in width for the FWHM of sonication after penetrating the skull.ConclusionThe vector angles of the sonication path in each direction were determined based on the transducer positioning results. It has been suggested that when time is limited for precise transducer positioning, fixing the transducer on the horizontal surface of the target region can also yield positive results for stimulation. This framework used a new transducer localization method to offer a reliable basis for further research and offered new methods for the use of tFUS in brain tumor-related research

    PTCDA molecular monolayer on Pb thin films: An unusual π-electron Kondo system and its interplay with a quantum-confined superconductor

    Get PDF
    The hybridization of magnetism and superconductivity has been an intriguing playground for correlated electron systems, hosting various novel physical phenomena. Usually, localized d- or f-electrons are central to magnetism. In this study, by placing a PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) molecular monolayer on ultra-thin Pb films, we built a hybrid magnetism/superconductivity (M/SC) system consisting of only sp electronic levels. The magnetic moments reside in the unpaired molecular orbital originating from interfacial charge-transfers. We reported distinctive tunneling spectroscopic features of such a Kondo screened pi-electron impurity lattice on a superconductor in the regime of TK>>delta suggesting the formation of a two-dimensional bound states band. Moreover, moiré superlattices with tunable twist angle and the quantum confinement in the ultra-thin Pb films provide easy and flexible implementations to tune the interplay between the Kondo physics and the superconductivity, which are rarely present in M/SC hybrid systems.Center for Dynamics and Control of Material

    Atomistic mechanisms of phase nucleation and propagation in a model two-dimensional system

    No full text
    We present a computational study on the solid–solid phase transition of a model two-dimensional system between hexagonal and square phases under pressure. The atomistic mechanism of phase nucleation and propagation are determined using solid-state Dimer and nudged elastic band (NEB) methods. The Dimer is applied to identify the saddle configurations and NEB is applied to generate the transition minimum energy path (MEP) using the outputs of Dimer. Both the atomic and cell degrees of freedom are used in saddle search, allowing us to capture the critical nuclei with relatively small supercells. It is found that the phase nucleation in the model material is triggered by the localized shear deformation that comes from the relative shift between two adjacent atomic layers. In addition to the conventional layer-by-layer phase propagation, an interesting defect-assisted low barrier propagation path is identified in the hexagonal to square phase transition. The study demonstrates the significance of using the Dimer method in exploring unknown transition paths without a priori assumption. The results of this study also shed light on phase transition mechanisms of other solid-state and colloidal systems.This is a manuscript of an article published as Shuang, Fei, Penghao Xiao, Liming Xiong, and Wei Gao. "Atomistic mechanisms of phase nucleation and propagation in a model two-dimensional system." Proceedings of the Royal Society A 478, no. 2268 (2022): 20220388. DOI: 10.1098/rspa.2022.0388. Copyright 2022 The Author(s). Posted with permission

    Inter-brain coupling reflects disciplinary differences in real-world classroom learning

    No full text
    Abstract The classroom is the primary site for learning. A vital feature of classroom learning is the division of educational content into various disciplines. While disciplinary differences could substantially influence the learning process toward success, little is known about the neural mechanism underlying successful disciplinary learning. In the present study, wearable EEG devices were used to record a group of high school students during their classes of a soft (Chinese) and a hard (Math) discipline throughout one semester. Inter-brain coupling analysis was conducted to characterize students’ classroom learning process. The students with higher scores in the Math final exam were found to have stronger inter-brain couplings to the class (i.e., all the other classmates), whereas the students with higher scores in Chinese were found to have stronger inter-brain couplings to the top students in the class. These differences in inter-brain couplings were also reflected in distinct dominant frequencies for the two disciplines. Our results illustrate disciplinary differences in the classroom learning from an inter-brain perspective, suggesting that an individual’s inter-brain coupling to the class and to the top students could serve as potential neural correlates for successful learning in hard and soft disciplines correspondingly

    Interface Engineering of Fe7S8/FeS2 Heterostructure in situ Encapsulated into Nitrogen-Doped Carbon Nanotubes for High Power Sodium-Ion Batteries

    No full text
    Highlights Iron sulfide-based heterostructure in situ hybridized with nitrogen-doped carbon nanotubes was prepared through a successive pyrolysis and sulfidation approach. The as-prepared Fe7S8/FeS2/NCNT electrode exhibits superior sodium storage performance in both ester and ether-based electrolytes. The structure advantages of the electrode contribute to high electrochemical performance in the ester-based electrolyte, while fast ionic diffusion and favorable capacitive behavior result in the robust sodium storage performance in the ether-based electrolyte
    corecore