3 research outputs found

    Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    No full text
    The present study examined directional connections in the brain among resting-state networks (RSNs) when the participant had their eyes open (EO) or had their eyes closed (EC). The resting-state fMRI data were collected from 20 healthy participants (11 males, 20.17 ± 2.74 years) under the EO and EC states. Independent component analysis (ICA) was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks), and the Gaussian Bayesian network (BN) learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM) was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salient attention network to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the attention (salient and dorsal)-related directional connections were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salient and dorsal attention networks were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the attention system (the salient and the dorsal attention network) might have important roles in resting-state brain networks and the neural substrate underpinning of switching between the EO and EC states

    CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic application

    Get PDF
    The prognosis of lymphoid neoplasms has improved considerably during the last decades. However, treatment response for some lymphoid neoplasms is still poor, indicating the need for new therapeutic approaches. One promising new strategy is the inhibition of kinases regulating key signal transduction pathways, which are of central importance in tumorigenesis. Kinases of the CK1 family may represent an attractive drug target since CK1 expression and/or activity are associated with the pathogenesis of malignant diseases. Over the last years efforts were taken to develop highly potent and selective CK1-specific inhibitor compounds and their therapeutic potential has now to be proved in pre-clinical trials. Therefore, we analyzed expression and mutational status of CK1δ in several cell lines representing established lymphoma entities, and also measured the mRNA expression level in primary lymphoma tissue as well as non-neoplastic blood cells. For a selection of lymphoma cell lines we furthermore determined CK1δ kinase activity and demonstrated therapeutic potential of CK1-specific inhibitors as a putative therapeutic option in the treatment of lymphoid neoplasms

    Overexpression of soybean isoflavone reductase (GmIFR) enhances resistance to Phytophthora sojae in soybean

    Get PDF
    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. The cDNA of GmIFR was 1199 bp containing a 939 bp open reading frame encoding a polypeptide of 312 amino acids. Sequence analysis suggested that GmIFR contained a NAD(P) domain of 107 amino acids. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (ABA), salicylic acid (SA). It is located in the cytoplasmic when transiently expressed in Arabidopsis protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while levels of genistein and glycitein had little change compared to that of control plants. Furthermore, we also found that the reactive oxygen species (ROS) content of transgenic soybean plants was significantly lower than that of control plants, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean
    corecore