5,453 research outputs found

    Secure Communication Based on Hyperchaotic Chen System with Time-Delay

    Get PDF
    This research is partially supported by National Natural Science Foundation of China (61172070, 60804040), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Innovative Research Team of Shaanxi Province(2013KCT-04), The Key Basic Research Fund of Shaanxi Province (2016ZDJC-01), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Riemann-Liouville Fractional Cosine Functions

    Full text link
    In this paper, a new notion, named Riemann-Liouville fractional cosine function is presented. It is proved that a Riemann-Liouville α\alpha-order fractional cosine function is equivalent to Riemann-Liouville α\alpha-order fractional resolvents introduced in [Z.D. Mei, J.G. Peng, Y. Zhang, Math. Nachr. 288, No. 7, 784-797 (2015)]

    A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning

    Full text link
    For safe and efficient planning and control in autonomous driving, we need a driving policy which can achieve desirable driving quality in long-term horizon with guaranteed safety and feasibility. Optimization-based approaches, such as Model Predictive Control (MPC), can provide such optimal policies, but their computational complexity is generally unacceptable for real-time implementation. To address this problem, we propose a fast integrated planning and control framework that combines learning- and optimization-based approaches in a two-layer hierarchical structure. The first layer, defined as the "policy layer", is established by a neural network which learns the long-term optimal driving policy generated by MPC. The second layer, called the "execution layer", is a short-term optimization-based controller that tracks the reference trajecotries given by the "policy layer" with guaranteed short-term safety and feasibility. Moreover, with efficient and highly-representative features, a small-size neural network is sufficient in the "policy layer" to handle many complicated driving scenarios. This renders online imitation learning with Dataset Aggregation (DAgger) so that the performance of the "policy layer" can be improved rapidly and continuously online. Several exampled driving scenarios are demonstrated to verify the effectiveness and efficiency of the proposed framework
    corecore