73 research outputs found

    A Deep Learning-enhanced Digital Twin Framework for Improving Safety and Reliability in Human-Robot Collaborative Manufacturing

    Get PDF
    In Industry 5.0, Digital Twins bring in flexibility and efficiency for smart manufacturing. Recently, the success of artificial intelligence techniques such as deep learning has led to their adoption in manufacturing and especially in human–robot collaboration. Collaborative manufacturing tasks involving human operators and robots pose significant safety and reliability concerns. In response to these concerns, a deep learning-enhanced Digital Twin framework is introduced through which human operators and robots can be detected and their actions can be classified during the manufacturing process, enabling autonomous decision making by the robot control system. Developed using Unreal Engine 4, our Digital Twin framework complies with the Robotics Operating System specification, and supports synchronous control and communication between the Digital Twin and the physical system. In our framework, a fully-supervised detector based on a faster region-based convolutional neural network is firstly trained on synthetic data generated by the Digital Twin, and then tested on the physical system to demonstrate the effectiveness of the proposed Digital Twin-based framework. To ensure safety and reliability, a semi-supervised detector is further designed to bridge the gap between the twin system and the physical system, and improved performance is achieved by the semi-supervised detector compared to the fully-supervised detector that is simply trained on either synthetic data or real data. The evaluation of the framework in multiple scenarios in which human operators collaborate with a Universal Robot 10 shows that it can accurately detect the human and robot, and classify their actions under a variety of conditions. The data from this evaluation have been made publicly available, and can be widely used for research and operational purposes. Additionally, a semi-automated annotation tool from the Digital Twin framework is published to benefit the collaborative robotics community

    Cortical Gray Matter Loss, Augmented Vulnerability to Speech-on-Speech Masking, and Delusion in People With Schizophrenia

    Get PDF
    People with schizophrenia exhibit impairments in target-speech recognition (TSR) against multiple-talker-induced informational speech masking. Up to date, the underlying neural mechanisms and its relationships with psychotic symptoms remain largely unknown. This study aimed to investigate whether the schizophrenia-associated TSR impairment contribute to certain psychotic symptoms by sharing underlying alternations in cortical gray-matter volume (GMV) with the psychotic symptoms. Participants with schizophrenia (N = 34) and their matched healthy controls (N = 29) were tested for TSR against a two-talker-speech masker. Psychotic symptoms of participants with schizophrenia were evaluated using the Positive and Negative Syndrome Scale. The regional GMV across various cortical regions was assessed using the voxel-based morphometry. The results of partial-correlation and mediation analyses showed that in participants with schizophrenia, the TSR was negatively correlated with the delusion severity, but positively with the GMV in the bilateral superior/middle temporal cortex, bilateral insular, left medial orbital frontal gyrus, left Rolandic operculum, left mid-cingulate cortex, left posterior fusiform, and left cerebellum. Moreover, the association between GMV and delusion was based on the mediating role played by the TSR performance. Thus, in people with schizophrenia, both delusions and the augmented vulnerability of TSR to informational masking are associated with each other and share the underlying cortical GMV reduction, suggesting that the origin of delusion in schizophrenia may be related to disorganized or limited informational processing (e.g., the incapability of adequately filtering information from multiple sources at the perceptual level). The TSR impairment can be a potential marker for predicting delusion severity

    Psychological symptoms in Chinese nurses may be associated with predisposition to chronic disease: A cross-sectional study of suboptimal health status

    Get PDF
    © 2020, The Author(s). Background: Suboptimal health status (SHS) is a reversible state between ideal health and illness and it can be effectively reversed by risk prediction, disease prevention, and personalized medicine under the global background of predictive, preventive, and personalized medicine (PPPM) concepts. More and more Chinese nurses have been troubled by psychological symptoms (PS). The correlation between PS and SHS is unclear in nurses. The purpose of current study is to investigate the prevalence of SHS and PS in Chinese nurses and the relationship between SHS and PS along with predisposing factors as well as to discuss the feasibility of improving health status and preventing diseases according to PPPM concepts in Chinese nurses. Methods: A cross-sectional study was conducted with the cluster sampling method among 9793 registered nurses in Foshan city, China. SHS was evaluated with the Suboptimal Health Status Questionnaire-25 (SHSQ-25). Meanwhile, the PS of depression and anxiety were evaluated with Self-Rating Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS) self-assessment questionnaires. The relationship between PS and SHS in Chinese nurses was subsequently analyzed. Results: Among the 9793 participants, 6107 nurses were included in the final analysis. The prevalence of SHS in the participants was 74.21% (4532/6107) while the symptoms of depression and anxiety were 47.62% (2908/6107) and 24.59% (1502/6107) respectively. The prevalence of SHS in the participants with depression and anxiety was significantly higher than those without the symptoms of depression (83.3% vs 16.7%, P \u3c 0.001) and anxiety (94.2% vs 5.8%, P \u3c 0.0001). The ratio of exercise habit was significantly lower than that of non-exercise habit (68.8% vs 78.4%, P \u3c 0.001) in SHS group. Conclusions: There is a high prevalence of SHS and PS in Chinese nurses. PS in Chinese nurses are associated with SHS. Physical exercise is a protective factor for SHS and PS so that the exercise should be strongly recommended as a valuable preventive measure well in the agreement with PPPM philosophy. Along with SDS and SAS, SHSQ-25 should also be highly recommended and applied as a novel predictive/preventive tool for the health measures from the perspectives of PPPM in view of susceptible population and individual screening, the predisposition to chronic disease preventing, personalization of intervention, and the ideal health state restoring

    Methylprednisolone as Adjunct to Endovascular Thrombectomy for Large-Vessel Occlusion Stroke

    Get PDF
    Importance It is uncertain whether intravenous methylprednisolone improves outcomes for patients with acute ischemic stroke due to large-vessel occlusion (LVO) undergoing endovascular thrombectomy. Objective To assess the efficacy and adverse events of adjunctive intravenous low-dose methylprednisolone to endovascular thrombectomy for acute ischemic stroke secondary to LVO. Design, Setting, and Participants This investigator-initiated, randomized, double-blind, placebo-controlled trial was implemented at 82 hospitals in China, enrolling 1680 patients with stroke and proximal intracranial LVO presenting within 24 hours of time last known to be well. Recruitment took place between February 9, 2022, and June 30, 2023, with a final follow-up on September 30, 2023.InterventionsEligible patients were randomly assigned to intravenous methylprednisolone (n = 839) at 2 mg/kg/d or placebo (n = 841) for 3 days adjunctive to endovascular thrombectomy. Main Outcomes and Measures The primary efficacy outcome was disability level at 90 days as measured by the overall distribution of the modified Rankin Scale scores (range, 0 [no symptoms] to 6 [death]). The primary safety outcomes included mortality at 90 days and the incidence of symptomatic intracranial hemorrhage within 48 hours. Results Among 1680 patients randomized (median age, 69 years; 727 female [43.3%]), 1673 (99.6%) completed the trial. The median 90-day modified Rankin Scale score was 3 (IQR, 1-5) in the methylprednisolone group vs 3 (IQR, 1-6) in the placebo group (adjusted generalized odds ratio for a lower level of disability, 1.10 [95% CI, 0.96-1.25]; P = .17). In the methylprednisolone group, there was a lower mortality rate (23.2% vs 28.5%; adjusted risk ratio, 0.84 [95% CI, 0.71-0.98]; P = .03) and a lower rate of symptomatic intracranial hemorrhage (8.6% vs 11.7%; adjusted risk ratio, 0.74 [95% CI, 0.55-0.99]; P = .04) compared with placebo. Conclusions and Relevance Among patients with acute ischemic stroke due to LVO undergoing endovascular thrombectomy, adjunctive methylprednisolone added to endovascular thrombectomy did not significantly improve the degree of overall disability.Trial RegistrationChiCTR.org.cn Identifier: ChiCTR210005172

    SSML: Spectral-Spatial Mutual-Learning-Based Framework for Hyperspectral Pansharpening

    Full text link
    This paper considers problems associated with the large size of the hyperspectral pansharpening network and difficulties associated with learning its spatial-spectral features. We propose a deep mutual-learning-based framework (SSML) for spectral-spatial information mining and hyperspectral pansharpening. In this framework, a deep mutual-learning mechanism is introduced to learn spatial and spectral features from each other through information transmission, which achieves better fusion results without entering too many parameters. The proposed SSML framework consists of two separate networks for learning spectral and spatial features of HSIs and panchromatic images (PANs). A hybrid loss function containing constrained spectral and spatial information is designed to enforce mutual learning between the two networks. In addition, a mutual-learning strategy is used to balance the spectral and spatial feature learning to improve the performance of the SSML path compared to the original. Extensive experimental results demonstrated the effectiveness of the mutual-learning mechanism and the proposed hybrid loss function for hyperspectral pan-sharpening. Furthermore, a typical deep-learning method was used to confirm the proposed framework’s capacity for generalization. Ideal performance was observed in all cases. Moreover, multiple experiments analysing the parameters used showed that the proposed method achieved better fusion results without adding too many parameters. Thus, the proposed SSML represents a promising framework for hyperspectral pansharpening
    corecore