29 research outputs found

    Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates

    No full text
    Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments

    Optimizing Planting Density to Increase Maize Yield and Water Use Efficiency and Economic Return in the Arid Region of Northwest China

    No full text
    High grain yield and water use efficiency (WUE) are the key goals when producing maize (Zea mays L.) under irrigation in arid areas. Increasing the planting density and optimizing irrigation are important agronomic practices for increasing the maize grain yield and WUE. A two-year field experiment was conducted to investigate the effects of planting density and irrigation on the maize grain yield, WUE, and economic return of spring maize under a mulch drip irrigation system in Xinjiang, Northwest China. The experiment included four irrigation levels and five planting densities. The results showed that the reduction of irrigation decreased the yield and evapotranspiration (ETc) but improved the WUE. Increasing the planting density increased the ETc, but there was a quadratic curve relationship between yield and WUE and planting density. Treatment with 600 mm of water and 12 plants m−2 obtained the highest grain yield (21.0–21.2 t ha−1) and economic return (3036.0 USD ha−1) and a relatively high WUE (2.64–2.70 kg kg−1). Therefore, a reasonable increase in planting density and an appropriate reduction of irrigation combined with drip irrigation under a mulch system can simultaneously achieve high yields and economic return and high WUE in maize production

    Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration

    No full text
    Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency

    Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates

    No full text
    Determining the water productivity of maize is of great significance for ensuring food security and coping with climate change. In 2018 and 2019, we conducted field trials in arid areas (Changji), semi-arid areas (Qitai) and semi-humid areas (Xinyuan). The hybrid XY335 was selected for the experiment, the planting density was 12.0 × 104 plants ha−1, and five irrigation amounts were set. The results showed that yield, biomass, and transpiration varied substantially and significantly between experimental sites, irrigation and years. Likewise, water use efficiency (WUE) for both biomass (WUEB) and yield (WUEY) were affected by these factors, including a significant interaction. Normalized water productivity (WP*) of maize increased significantly with an increase in irrigation. The WP* for film mulched drip irrigation maize was 37.81 g m−2 d−1; it was varied significantly between sites and irrigation or their interaction. We conclude that WP* differs from the conventional parameter for water productivity but is a useful parameter for assessing the attainable rate of film-mulched drip irrigation maize growth and yield in arid areas, semi-arid areas and semi-humid areas. The parametric AquaCrop model was not accurate in simulating soil water under film mulching. However, it was suitable for the prediction of canopy coverage (CC) for most irrigation treatments

    Physiological Influence of Stalk Rot on Maize Lodging after Physiological Maturity

    No full text
    The stalk lodging caused by stalk rot after physiological maturity (PM) is a major factor restricting further development of mechanical grain harvesting in China. The physiological mechanism of stalk rot on maize stalk lodging after PM is not clear. This study, based on investigating stalk rot under natural field conditions, demonstrated the relation between stalk rot caused by Fusarium spp. and lodging of 35 maize cultivars after PM. In addition, three widely-planted maize cultivars were inoculated with Fusarium spp. at PM to analyze the pathogen of stalk rot causing lodging, by measuring the infection process, carbohydrate contents, and mechanical strength of stalks. Stalk lodging increased by 0.11–0.32% for each 1% incidence of stalk rot. The stalk rot pathogen infected stalks from the pith to the rind. At the level of longitudinal section, the stalk rot pathogen spread from the inoculation internode upwardly and downwardly. These infections gradually increased with the days after PM. Inoculated plants had decreased soluble sugar content; however, cellulose and lignin contained in the inoculated plants were both higher than that in the non-inoculated treatment. Crushing strength was significantly and positively correlated with percentage of soluble sugar. This indicated that the reduction of soluble sugar content during the natural senescence of maize stalk after PM was an important factor for the decrease of stalk strength and the increase of stalk lodging. The occurrence of stalk rot accelerated the decomposition of soluble sugar, which accelerated the decrease of stalk strength and greatly increased risk of stalk lodging

    Effects of Nitrogen Fertilizer Management on Stalk Lodging Resistance Traits in Summer Maize

    No full text
    Stalk lodging in Huang-Huai-Hai summer maize is a serious problem that reduces maize yields and precludes the use of mechanical grain harvesting equipment. In order to determine the effect of nitrogen management on the lodging resistance of maize stalk, three nitrogen application rates of 150, 250, and 350 kg ha−1 (denoted as N150, N250, and N350), and different nitrogen application periods (sowing, 6-leaf, 12-leaf, silking) were set. Plant morphology, stalk mechanical strength, total carbohydrate, nitrogen content, and yield were measured in the different treatments. The results showed that as the nitrogen application rate increased and nitrogen application was postponed, the stalk breaking force, plant height, ear height, center of gravity height, stalk basal internode diameter, rind penetration strength, content of carbohydrate, and total N of maize stalk also increased. The stalk lodging resistance was improved by the increased nitrogen application rate and postponed nitrogen application by increasing the stalk material accumulation and mechanical strength. The nitrogen application rates had no significant effect on grain yield. Under N250 and N350, the treatments with no base fertilizer significantly decreased the kernel number per ear, reflected in some in grain yield. In summary, under the conditions of integrated water and fertilizer drip irrigation and fractional nitrogen fertilizer applications, increased nitrogen fertilizer input can stimulate the growth of high-quality maize populations, significantly improve stalk lodging resistance in the early growth stage, delay stalk senescence, improve stalk strength and influence stalk composition in later growth stages. Based on the summer maize grain yield and stalk lodging resistance, under N250 treatment, a base fertilizer combined with topdressing at the 12-leaf and silking stages was beneficial to the growth of summer maize
    corecore