43 research outputs found

    Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming

    Get PDF
    More intense, more frequent, and longer heat waves are expected in the future due to global warming, which could have dramatic ecological impacts. However, few studies have involved invasive species. The aims of this study were to examine the effect of extreme heating (40/35°C for 30d) on the growth and photosynthesis of an alien invasive species Wedelia trilobata and its indigenous congener (Wedelia chinensis) in South China, and to determine the development of this invasive species and its potential adaptive mechanism. In comparison with W. chinensis, W. trilobata suffered less inhibition of the relative growth rate (RGR) and biomass production due to high temperature, which was consistent with the changes of photosystem II (PSII) activity and net photosynthetic rate (Pn). High temperature caused a partial inhibition of PSII, but the adverse effect was more severe in W. chinensis. Measurement of the minimum fluorescence (Fo) versus temperature curves showed that W. trilobata had a higher inflexion temperature of Fo (Ti), indicating greater thermostability of the photosynthetic apparatus. Moreover, comparisons of absorbed light energy partitioning revealed that W. trilobata increased xanthophyll-dependent thermal dissipation (ΦNPQ) under high temperature, while retaining the higher fraction of absorbed light allocated to photochemistry (ΦPSII) relative to W. chinensis. The results suggest that the invasive W. trilobata has a high thermostability of its photosynthetic apparatus and an effective regulating mechanism in energy partitioning of PSII complexes to minimize potential damage and to retain greater capability for carbon assimilation. These factors confer greater heat stress tolerance compared with the native species. Therefore, the invasive W. trilobata may become more aggressive with the increasingly extreme heat climates

    A new strategy for controlling invasive weeds: selecting valuable native plants to defeat them

    Get PDF
    To explore replacement control of the invasive weed Ipomoea cairica, we studied the competitive effects of two valuable natives, Pueraria lobata and Paederia scandens, on growth and photosynthetic characteristics of I. cairica, in pot and field experiments. When I. cairica was planted in pots with P. lobata or P. scandens, its total biomass decreased by 68.7% and 45.8%, and its stem length by 33.3% and 34.1%, respectively. The two natives depressed growth of the weed by their strong effects on its photosynthetic characteristics, including suppression of leaf biomass and the abundance of the CO 2 -fixing enzyme RUBISCO. The field experiment demonstrated that sowing seeds of P. lobata or P. scandens in plots where the weed had been largely cleared produced 11.8-fold or 2.5-fold as much leaf biomass of the two natives, respectively, as the weed. Replacement control by valuable native species is potentially a feasible and sustainable means of suppressing I. cairica

    Reduced grain chalkiness and its possible physiological mechanism in transgenic rice overexpressing l-GalLDH

    Get PDF
    AbstractChalkiness is one of the key factors determining rice quality and price. Ascorbic acid (Asc) is a major plant antioxidant that performs many functions in plants. l-Galactono-1,4-lactone dehydrogenase (l-GalLDH, EC1.3.2.3) is an enzyme that catalyzes the final step of Asc biosynthesis in plants. Here we show that the l-GalLDH-overexpressing transgenic rice, GO-2, which has constitutively higher leaf Asc content than wild-type (WT) plants, exhibits significantly reduced grain chalkiness. Higher foliar ascorbate/dehydroascorbate (Asc/DHA) ratios at 40, 60, 80, and 100days of plant age were observed in GO-2. Further investigation showed that the enhanced level of Asc resulted in a significantly higher ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) protein level in GO-2 at 80days. In addition, levels of abscisic acid (ABA) and jasmonic acid (JA) were lower in GO-2 at 60, 80, and 100days. The results we present here indicate that the enhanced level of Asc is likely responsible for changing redox homeostasis in key developmental stages associated with grain filling and alters grain chalkiness in the l-GalLDH-overexpressing transgenic by maintaining photosynthetic function and affecting phytohormones associated with grain filling

    DIFFERENTIAL RESPONSES OF PHOTOSYSTEM II ACTIVITY TO PHOTOOXIDATION IN RED AND GREEN TISSUES OF AMARANTHUS TRICOLOR LEAVES

    Get PDF
    In order to study the antioxidative potential of amaranthine and its relationships with photoprotection, changes of PS II activity of red and green tissue in the same edible amaranth leaf were compared under photooxidation treatment induced by MV (methy

    Functional Connectivity Density, Local Brain Spontaneous Activity, and Their Coupling Strengths in Patients With Borderline Personality Disorder

    Get PDF
    In this study, combining degree centrality (DC) and fractional amplitude of low frequency fluctuation (fALFF) analyses of resting state (rs)-functional magnetic resonance imaging (fMRI) data, we aimed to explore functional connectivity density, local brain spontaneous activity, and their coupling strengths in borderline personality disorder (BPD). Forty-three BPD patients and 39 demographically-matched controls underwent rs-fMRI after completing a series of psychological tests. Two-sample t-tests were performed to compare DC and fALFF between these two groups. Across-voxel correlation analysis was conducted to assess DC-fALFF coupling strengths in each group. Imaging parameters and psychological variables were correlated by Pearson correlation analysis in the BPD group. Altered DC and fALFF values in the BPD group, compared with the control group, were distributed mainly in default mode network (DMN), and DC-fALFF coupling strengths were decreased in the left middle temporal gyrus (MTG) and right precuneus in the BPD group. Additionally, insecure attachment scores correlated positively with left precuneus DC and negatively with fALFF of the right posterior cingulate cortex (PCC) in the BPD group. These altered DC and fALFF findings indicate that the BPD patients had disturbed functional connectivity density and local spontaneous activity in the DMN compared with control subjects. Their decreased connectivity-amplitude coupling suggests that the left MTG and right precuneus may be functional impairment hubs in BPD. Disturbed rs function in the left precuneus and right PCC might underlie insecure attachment in BPD

    Comparison of the Ability to Control Water Loss in the Detached Leaves of Wedelia trilobata, Wedelia chinensis, and Their Hybrid

    No full text
    In the process of biological invasion, hybridization between invasive species and native species is very common, which may lead to the formation of hybrids with a stronger adaptability. The hybrid of Wedelia trilobata (an alien invasive species) and Wedelia chinensis (an indigenous congener) has been found in South China. In our previous study, we found that the hybrid showed heterosis under cadmium stress. However, the results of this experiment demonstrated that the leaves of the hybrid had no heterosis in controlling water loss. The results showed that the water loss rate of W. trilobata was the slowest, that of W. chinensis was the fastest, and that of the hybrid was in the middle. Compared with W. chinensis and the hybrid, W. trilobata accumulated more abscisic acid (ABA) in leaves to control water loss. After the leaves were detached, W. chinensis leaves suffered the most serious damage, the lowest maximum photochemical efficiency, the most serious membrane lipid peroxidation, and the largest accumulation of malondialdehyde and reactive oxygen species. Compared with W. chinensis and its hybrid, the leaves of W. trilobata could accumulate more antioxidant enzymes and antioxidants, and the total antioxidant capacity was the strongest. The results demonstrate that the ability of the hybrid to reduce water loss was lower than that of W. trilobata, but higher than that of W. chinensis. They showed that the drought resistance of the hybrid may be higher than that of W. chinensis, and it might threaten the survival of W. chinensis

    The Changing Distribution of Anthocyanin in Mikania micrantha Leaves as an Adaption to Low-Temperature Environments

    No full text
    Anthocyanins, a protective substance in plant leaves, can accumulate in large quantities under low-temperature induction. In order to explore the effect of anthocyanins in Mikania micrantha leaves, the Rubisco, photosynthesis, pigments, and antioxidative capacity in mature leaves (ML) and young leaves (YL) of M. micrantha were investigated in winter. YL were red on both the adaxial and abaxial surfaces, while ML was red on the abaxial surfaces and green on the adaxial surfaces. Compared with ML, the relative expression of the genes related to anthocyanin synthesis and anthocyanin content were significantly higher in YL. Antioxidants such as flavonoids and total phenols were found in higher quantities, and the total antioxidant capacity was also significantly higher in YL. However, in ML, the Rubisco and chlorophyll content related to photosynthesis were significantly higher. The stomata of ML displayed a larger aperture than YL, and the stomatal conductance and photosynthetic rate were significantly higher in ML. The results suggested that M. micrantha leaves could better adapt to the winter environment through changing the distribution of anthocyanins in leaves of different maturity

    Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light

    No full text
    Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3-sophoroside-5- glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid-phase extraction was 66 mg g -1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1-diphenyl-2-picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high-light (1300 μmol m-2 s-1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high-light stress
    corecore