9 research outputs found

    Synthesis and antiviral activity of a series of novel N-phenylbenzamide and N-phenylacetophenone compounds as anti-HCV and anti-EV71 agents

    Get PDF
    AbstractA series of novel N-phenylbenzamide and N-phenylacetophenone compounds were synthesized and evaluated for their antiviral activity against HCV and EV71 (strain SZ-98). The biological results showed that three compounds (23, 25 and 41) exhibited considerable anti-HCV activity (IC50=0.57–7.12μmol/L) and several compounds (23, 28, 29, 30, 31 and 42) displayed potent activity against EV71 with the IC50 values lower than 5.00μmol/L. The potency of compound 23 (IC50=0.57μmol/L) was superior to that of reported compounds IMB-1f (IC50=1.90μmol/L) and IMB-1g (IC50=1.00μmol/L) as anti-HCV agents, and compound 29 possessed the highest anti-EV71 activity, comparable to the comparator drug pirodavir. The efficacy in vivo and antiviral mechanism of these compounds warrant further investigations

    Synthesis of novel substituted N-aryl benzamides as hA3G stabilizers and their inhibitory activities against hepatitis C virus replication

    Get PDF
    AbstractA series of novel amino-substituted N-aryl benzamide analogs were synthesized and evaluated for their ability to inhibit hepatitis C virus (HCV) replication in acutely infected Huh7.5 cells. Most of the substituted N-aryl benzamide compounds showed convincing anti-HCV activities. Compounds 1f, 1g and 4c exhibited potent anti-replicative activity at low micromolar levels (IC50=1.0–2.0μM) with selective indices (SI) greater than 40. Mechanistic analysis indicated that the active compounds increased intracellular hA3G protein levels and inhibited HCV replication in a dose-dependent manner. The results demonstrate that this series of substituted N-aryl benzamide compounds warrant further investigation as inhibitors of HCV replication

    Recent advances in the anti-HCV mechanisms of interferon

    Get PDF
    Interferon (IFN) in combination with ribavirin has been the standard of care (SOC) for chronic hepatitis C for the past few decades. Although the current SOC lacks the desired efficacy, and 4 new direct-acting antiviral agents have been recently approved, interferons are still likely to remain the cornerstone of therapy for some time. Moreover, as an important cytokine system of innate immunity, host interferon signaling provides a powerful antiviral response. Nevertheless, the mechanisms by which HCV infection controls interferon production, and how interferons, in turn, trigger anti-HCV activities as well as control the outcome of HCV infection remain to be clarified. In this report, we review current progress in understanding the mechanisms of IFN against HCV, and also summarize the knowledge of induction of interferon signaling by HCV infection

    Synthesis and biological evaluation of sophocarpinic acid derivatives as anti-HCV agents

    Get PDF
    Chronic hepatitis C virus (HCV) infection has become a major public health burden worldwide. Twenty-two sophocarpinic acid or matrine derivatives were synthesized and their anti-HCV activities were evaluated in vitro. The structure-activity analysis revealed that (i) sophocarpinic acids with a D-seco 3-ring structure scaffold were more favorable than matrines with a 4-ring scaffold; (ii) the introduction of an electron-withdrawing group on the phenyl ring in 12-N-benzenesulfonyl Δβγ sophocarpinic acids was beneficial for the antiviral activity against HCV. Among them, compounds 9h and 9j exhibited the most potent inhibitory activities on HCV replication with selectivity indies of 70.3 and 30.9, respectively. Therefore, both were selected as antiviral candidates for further investigation

    Replication priority of hepatitis C virus genotype 2a in a Chinese cohort

    Get PDF
    HCV genotypes have been documented in clinical practice. The aim of this study was to determine the replication priority of different HCV genotypes in a Chinese HCV positive cohort. Serum samples from 491 apparently healthy Chinese blood donors testing positive for HCV antibodies and naive to antiviral drug therapy were tested. Genotyping analysis showed that genotypes 1b and 2a were predominant and accounted for 77.6% of the HCV infections. Among the genotype groups, individuals infected with genotype 2a had an HCV RNA viral load (108 copies/mL) about 200-fold (lg, 2.3) greater than those infected with other genotypes (104–105 copies/mL) indicating a replication priority of genotype 2a. However, there was no correlation between HCV genotype and antibody response suggesting that the amplification advantage of genotype 2a results from a favorable interaction with the host cellular environment. In conclusion, HCV genotypes 1b and 2a are the predominant genotypes in China and genotype 2a possesses a significant replication priority compared with the other genotypes. This suggests the existence of host cellular factors that may act as drug-targets for entirely clearing HCV infection in the future

    Microbial Natural Product Alternariol 5-O-Methyl Ether Inhibits HIV-1 Integration by Blocking Nuclear Import of the Pre-Integration Complex

    No full text
    While Highly Active Antiretroviral Therapy (HAART) has significantly decreased the mortality of human immunodeficiency virus (HIV)-infected patients, emerging drug resistance to approved HIV-1 integrase inhibitors highlights the need to develop new antivirals with novel mechanisms of action. In this study, we screened a library of microbial natural compounds from endophytic fungus Colletotrichum sp. and identified alternariol 5-O-methyl ether (AME) as a compound that inhibits HIV-1 pre-integration steps. Time-of addition analysis, quantitative real-time PCR, confocal microscopy, and WT viral replication assay were used to elucidate the mechanism. As opposed to the approved integrase inhibitor Raltegravir, AME reduced both the integrated viral DNA and the 2-long terminal repeat (2-LTR) circular DNA, which suggests that AME impairs the nuclear import of viral DNA. Further confocal microscopy studies showed that AME specifically blocks the nuclear import of HIV-1 integrase and pre-integration complex without any adverse effects on the importin α/β and importin β-mediated nuclear import pathway in general. Importantly, AME inhibited Raltegravir-resistant HIV-1 strains and exhibited a broad anti-HIV-1 activity in diverse cell lines. These data collectively demonstrate the potential of AME for further development into a new HIV inhibitor, and suggest the utility of viral DNA nuclear import as a target for anti-HIV drug discovery

    Down-Regulating the High Level of 17-Beta-Hydroxysteroid Dehydrogenase 13 Plays a Therapeutic Role for Non-Alcoholic Fatty Liver Disease

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and there is no specific drug to treat it. Recent results showed that 17-beta-hydroxysteroid dehydrogenase type 13 (HSD17B13) is associated with liver diseases, but these conclusions are controversial. Here, we showed that HSD17B13 was more highly expressed in the livers of NAFLD patients, and high expression was induced in the livers of murine NAFLD models and cultural hepatocytes treated using various etiologies. The high HSD17B13 expression in the hepatocytes facilitated the progression of NAFLD by directly stabilizing the intracellular lipid drops and by indirectly activating hepatic stellate cells. When HSD17B13 was overexpressed in the liver, it aggravated liver steatosis and fibrosis in mice fed with a high-fat diet, while down-regulated the high expression of HSD17B13 by short hairpin RNAs produced a therapeutic effect in the NAFLD mice. We concluded that high HSD17B13 expression is a good target for the development of drugs to treat NAFLD

    Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed –1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element

    No full text
    The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed –1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants
    corecore