1,624 research outputs found
Pulse shape discrimination based on the Tempotron: a powerful classifier on GPU
This study introduces the Tempotron, a powerful classifier based on a
third-generation neural network model, for pulse shape discrimination. By
eliminating the need for manual feature extraction, the Tempotron model can
process pulse signals directly, generating discrimination results based on
learned prior knowledge. The study performed experiments using GPU
acceleration, resulting in over a 500 times speedup compared to the CPU-based
model, and investigated the impact of noise augmentation on the Tempotron's
performance. Experimental results showed that the Tempotron is a potent
classifier capable of achieving high discrimination accuracy. Furthermore,
analyzing the neural activity of Tempotron during training shed light on its
learning characteristics and aided in selecting the Tempotron's
hyperparameters. The dataset used in this study and the source code of the
GPU-based Tempotron are publicly available on GitHub at
https://github.com/HaoranLiu507/TempotronGPU.Comment: 14 pages,7 figure
(E)-4-Bromo-N′-(2-hydrÂoxy-1-naphthylÂmethylÂene)benzohydrazide
The title compound, C18H13BrN2O2, was synthesized by the reaction of 2-hydrÂoxy-1-naphthaldehyde with 4-bromoÂbenzohydrazide. This Schiff base molÂecule has an E configuration about the C=N bond and is almost planar, the dihedral angle between the mean planes through the substituted benzene ring and the naphthyl system being 6.6 (2)°. There is an intraÂmolecular O—H⋯N hydrogen bond involving the naphthyl hydrÂoxy substituent and the N′ atom of the hydrazide group. In the crystal structure, molÂecules are linked through interÂmolecular N—-H⋯O hydrogen bonds to form chains extending along the b direction
Neuronal representation of working memory in the medial prefrontal cortex of rats
Working memory is a process for short-term active maintenance of information. Behavioral neurophysiological studies in monkeys have demonstrated that the dorsolateral prefrontal cortex (dlPFC) is a key cortical region for working memory. The medial prefrontal cortex (mPFC) in rats is a cortical area similar to the dlPFC in monkeys in terms of anatomical connections, and is also required for behavioral performance on working-memory tasks. However, it is still controversial regarding whether and how mPFC neurons encode working memory. In the present study, we trained rats on a two-choice spatial delayed alternation task in Y maze, a typical working memory task for rodents, and investigated neuronal activities in the mPFC when rats performed the task. Our results show that, (1) inactivation of the mPFC severely impaired the performance of rats on the task, consistent with previous studies showing the importance of the mPFC for working-memory tasks; (2) 93.7% mPFC cells (449 in 479) exhibited changes in spiking frequency that were temporally locked with the task events, some of which, including delay-related cells, were tuned by spatial information; (3) differential delay activities in individual mPFC cells appeared transiently and sequentially along the delay, especially during the early phase of the delay; (4) some mPFC cells showed no change in discharge frequency but exhibited differential synchronization in firing during the delay. The present results suggest that mPFC neurons in rats are involved in encoding working memory, via increasing firing frequency or synchronization
- …