53 research outputs found

    Sepsis-related stress response: known knowns, known unknowns, and unknown unknowns

    Get PDF
    The hypothalamic-pituitary-adrenal (HPA) axis response in sepsis remains to be elucidated. Apart from corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol, many other neuroendocrine factors participate in the regulation of HPA stress response. The HPA response to acute and chronic illness exerts a biphasic profile. Tissue corticosteroid resistance may also play an important role. All of these add to the complexity of the concept of ‘relative adrenal insufficiency' and may account for the difficulty of clinical diagnosis and for the conflicting results of corticosteroid replacement therapy in severe sepsis/septic shock. The study by Lesur and colleagues expands our understanding of the mechanism, and further study of HPA stress response is warranted

    Clinical review: Critical care medicine in mainland China

    Get PDF
    Critical care medicine began in mainland China in the early 1980s. After almost 30 years of effort, it has been recognized as a specialty very recently. However, limited data suggest that critical care resources, especially ICU beds, are inadequate compared with those of developed countries. National critical care societies work together to set up good practice standards, and to improve academic levels with scientific meetings, education programs, and training courses. Critical care research in mainland China is beginning to evolve, with great potential for improvement

    Highly selective fluorescent chemosensor for Zn2+ derived from inorganic-organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles

    Get PDF
    Magnetic nanoparticles with attractive optical properties have been proposed for applications in such areas as separation and magnetic resonance imaging. In this paper, a simple and novel fluorescent sensor of Zn2+ was designed with 3,5-di-tert-butyl-2-hydroxybenzaldehyde [DTH] covalently grafted onto the surface of magnetic core/shell Fe3O4@SiO2 nanoparticles [NPs] (DTH-Fe3O4@SiO2 NPs) using the silanol hydrolysis approach. The DTH-Fe3O4@SiO2 inorganic-organic hybrid material was characterized by transmission electron microscopy, dynamic light scattering, X-ray power diffraction, diffuse reflectance infrared Fourier transform, UV-visible absorption and emission spectrometry. The compound DTH exhibited fluorescence response towards Zn2+ and Mg2+ ions, but the DTH-Fe3O4@SiO2 NPs only effectively recognized Zn2+ ion by significant fluorescent enhancement in the presence of various ions, which is due to the restriction of the N-C rotation of DTH-Fe3O4@SiO2 NPs and the formation of the rigid plane with conjugation when the DTH-Fe3O4@SiO2 is coordinated with Zn2+. Moreover, this DTH-Fe3O4@SiO2 fluorescent chemosensor also displayed superparamagnetic properties, and thus, it can be recycled by magnetic attraction

    Introducing carbon dots to moderate the blue emission from zinc vanadium oxide hydroxide hydrate nanoplates

    Get PDF
    The relative intensity of the blue component of the total emission from light-emitting diodes (LEDs) can be an important factor when assessing their biological safety. Carbon quantum dots (CQDs) are compatible with many materials and present a high density of multiple surface states; the incorporation of such CQDs thus offers a route to modifying the emission from a given LED matrix. Here we report the fabrication of stable CQD/zinc pyrovanadate (Zn(3)(OH)(2)V(2)O(7)·2H(2)O) nanoplate composites via a facile hydrothermal route. Structural and morphological analyses confirm that the nanoplates are hexagonal phase and grew normal to the [0001] direction. X-ray photoemission spectroscopy, Raman and infrared spectroscopy demonstrate that the CQDs combine with nanoplates via surface carbon–oxygen bonds. Wavelength resolved photoluminescence measurements show that the relative intensity of the blue (2.93 eV) component of the emission associated with the nanoplates is significantly reduced by incorporating CQDs. We suggest that this reduction arises as a result of preferential trapping of the higher energy photoelectrons by surface defects on the CQDs

    Caste-specific RNA editomes in the leaf-cutting ant <i>Acromyrmex echinatior</i>

    Get PDF
    Eusocial insects have evolved the capacity to generate adults with distinct morphological, reproductive and behavioural phenotypes from the same genome. Recent studies suggest that RNA editing might enhance the diversity of gene products at the post-transcriptional level, particularly to induce functional changes in the nervous system. Using head samples from the leaf-cutting ant Acromyrmex echinatior, we compare RNA editomes across eusocial castes, identifying ca. 11,000 RNA editing sites in gynes, large workers and small workers. Those editing sites map to 800 genes functionally enriched for neurotransmission, circadian rhythm, temperature response, RNA splicing and carboxylic acid biosynthesis. Most A. echinatior editing sites are species specific, but 8–23% are conserved across ant subfamilies and likely to have been important for the evolution of eusociality in ants. The level of editing varies for the same site between castes, suggesting that RNA editing might be a general mechanism that shapes caste behaviour in ants

    Dynamics of Gut Microbiome in Giant Panda Cubs Reveal Transitional Microbes and Pathways in Early Life

    Get PDF
    Adult giant pandas (Ailuropoda melanoleuca) express transitional characteristics in that they consume bamboos, despite their carnivore-like digestive tracts. Their genome contains no cellulolytic enzymes; therefore, understanding the development of the giant panda gut microbiome, especially in early life, is important for decoding the rules underlying gut microbial formation, inheritance and dietary transitions. With deep metagenomic sequencing, we investigated the gut microbiomes of two newborn giant panda brothers and their parents living in Macao, China, from 2016 to 2017. Both giant panda cubs exhibited progressive increases in gut microbial richness during growth, particularly from the 6th month after birth. Enterobacteriaceae dominated the gut microbial compositions in both adult giant pandas and cubs. A total of 583 co-abundance genes (CAGs) and about 79 metagenomic species (MGS) from bacteria or viruses displayed significant changes with age. Seven genera (Shewanella, Oblitimonas, Helicobacter, Haemophilus, Aeromonas, Listeria, and Fusobacterium) showed great importance with respect to gut microbial structural determination in the nursing stage of giant panda cubs. Furthermore, 10 orthologous gene functions and 44 pathways showed significant changes with age. Of the significant pathways, 16 from Escherichia, Klebsiella, Propionibacterium, Lactobacillus, and Lactococcus displayed marked differences between parents and their cubs at birth, while 29 pathways from Escherichia, Campylobacter and Lactobacillus exhibited significant increase in cubs from 6 to 9 months of age. In addition, oxidoreductases, transferases, and hydrolases dominated the significantly changed gut microbial enzymes during the growth of giant panda cubs, while few of them were involved in cellulose degradation. The findings indicated diet-stimulated gut microbiome transitions and the important role of Enterobacteriaceae in the guts of giant panda in early life

    Active Surveillance of Carbapenemase-Producing Organisms (CPO) Colonization With Xpert Carba-R Assay Plus Positive Patient Isolation Proves to Be Effective in CPO Containment

    Get PDF
    Background: Rapid screening of patients for colonization with carbapenemase-producing organisms (CPO), coupled with implementation of infection prevention strategies, has the potential to contain the spread of CPO.Methods: We first evaluated the performance of Xpert Carba-R assay (in comparison with other phenotypic methods) for carbapenemase detection using clinical isolates, and then used it to determine the intestinal CPO colonization in hospitalized patients. We then assessed the effectiveness of patient isolation in controlling the spread of CPO in a medical intensive care unit.Results: The Xpert Carba-R assay required the least processing time to reveal results and showed a 94.5% sensitivity and specificity in carbapenemase detection, except for IMP-8 (n = 4). During a 6-month study period, 134 patients in one ward were studied for CPO colonization and infection. Fifteen patients (11.2%) were colonized by CPO as detected by Xpert Carba-R assay, including three NDM, three IMP, and nine KPC possessing strains. The overall colonization and CPO infection rates were both 11.2% each. Isolation of patients with CPO led to a reduction in both colonization (from 28.6 to 5.6%) and infection rates (from 35.7 to 2.8%) during the study period (p &lt; 0.05).Conclusion: Active surveillance of CPO utilizing the Xpert Carba-R assay supplemented with immediate patient isolation, proved to be an effective strategy to limit the spread of CPO in a health care setting

    Molecular Mechanism of MiR-136-5p Targeting NF-κB/A20 in the IL-17-Mediated Inflammatory Response after Spinal Cord Injury

    No full text
    Background/Aims: The pathophysiology of spinal cord injury (SCI) results in serious damage to the human body via an increase in the secondary biological processes imposed by activated astrocytes. Abnormal expression of microRNAs after SCI has become a potential research focus. However, the underlying mechanisms are poorly understood. Methods: SCI models were established in rats using Allen’s method, and the BBB scoring method was employed to assess locomotor function. Lentivirus was used to infect rat astrocytes and SCI rats. Real-time PCR and antibody chip were used to measure gene expression and cytokine secretion. Western blot analysis was employed to detect protein expression. HE staining was used to assess the histological changes in SCI. The immunohistochemical staining of A20 and p-NF-κB in SCI was also analyzed. Results: The in vitro experiment showed that miR-136-5p up-regulated the expression of p-NF-κB by down-regulating the expression of A20 so that astrocytes produced inflammatory factors and chemokines. The in vivo experiment indicated that overexpressed miR-136-5p promoted the production of inflammatory factors, chemokines and p-NF-κB in SCI rats, whereas it inhibited the expression of A20 protein and increased inflammatory cell infiltration and injuries in the spinal cord. Conclusion: The current findings indicate that silencing miR-136-5p effectively decreased inflammatory factors and chemokines and protected the spinal cord via NF-κB/A20 signaling in vivo and in vitro. In contrast, overexpression of miR-136-5p had the opposite effect
    • …
    corecore