4 research outputs found
IL-4 induces CD22 expression to restrain the effector program of self-reactive virtual memory T cells
Abstract
Parasitic helminths induce the production of interleukin (IL)-4 which causes the expansion of virtual memory CD8+ T cells (Tvm), a cell subset contributing to the control of viral coinfection. However, the mechanisms regulating IL-4-dependent Tvm activation and expansion during worm infection remain ill defined. We used single-cell RNA sequencing of CD8+ T cells to investigate IL-4-dependent Tvm responses upon helminth infection in mice. Gene signature analysis of CD8+ T cells identified a cell cluster marked by CD22, a canonical regulator of B cell activation, as a specific and selective surface marker of IL-4-induced Tvm cells. CD22+ Tvm were enriched for IFN-γ and granzyme A and retained a diverse TCR repertoire, while enriched in CDR3 sequences with features of self-reactivity. Deletion of CD22 expression in CD8+ T cells enhanced Tvm responses to helminth infection, indicating that this inhibitory receptor modulates Tvm responses. Thus, helminth-induced IL-4 drives the expansion and activation of self-reactive Tvm in the periphery that is counter-inhibited by CD22
Genome-wide association studies with experimental validation identify a protective role for B lymphocytes against chronic post-surgical pain
Background: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. Methods: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. Results: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ∼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. Conclusions: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain
A protocol for generating germ-free Heligmosomoides polygyrus bakeri larvae for gnotobiotic helminth infection studies.
The microbes indigenous to helminth species are a major obstacle to deciphering host-parasite interactions. Repurposing a system of reversible bacterial colonization, we have generated germ-free Heligomosomoides polygyrus bakeri (Hpb) larvae that maintain the sterility of axenic mice upon infection. This protocol provides a valuable tool for controlled studies of helminth-microbiota-immune interactions
Genome-wide association studies with experimental validation identify a protective role for B lymphocytes against chronic post-surgical pain
BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ~39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain