43,696 research outputs found
Simultaneous Determination of the Cosmic Ray Ionization Rate and Fractional Ionization in DR21(OH)
We present a new method for the simultaneous calculation of the cosmic ray
ionization rate, zeta(H2), and the ionization fraction, chi(e), in dense
molecular clouds. A simple network of chemical reactions dominant in the
creation and destruction of HCNH+ and HCO+ is used in conjunction with observed
pairs of rotational transitions of several molecular species in order to
determine the electron abundance and the H3+ abundance. The cosmic ray
ionization rate is then calculated by taking advantage of the fact that, in
dark clouds, it governs the rate of creation of H3+. We apply this technique to
the case of the star-forming region DR21(OH), where we successfully detected
the (J=3-2) and (J=4-3) rotational transitions of HCNH+. We also determine the
C and O isotopic ratios in this source to be 12C/13C=63+-4 and 16O/18O=318+-64,
which are in good agreement with previous measurements in other clouds. The
significance of our method lies in the ability to determine N(H3+) and chi(e)
directly from observations, and estimate zeta(H2) accordingly. Our results,
zeta(H2)=3.1x10^(-18) 1/s and chi(e)=3.2x10^(-8), are consistent with recent
determinations in other objects.Comment: 22 pages, including 3 figure
Adaptive Randomized Distributed Space-Time Coding in Cooperative MIMO Relay Systems
An adaptive randomized distributed space-time coding (DSTC) scheme and
algorithms are proposed for two-hop cooperative MIMO networks. Linear minimum
mean square error (MMSE) receivers and an amplify-and-forward (AF) cooperation
strategy are considered. In the proposed DSTC scheme, a randomized matrix
obtained by a feedback channel is employed to transform the space-time coded
matrix at the relay node. Linear MMSE expressions are devised to compute the
parameters of the adaptive randomized matrix and the linear receive filter. A
stochastic gradient algorithm is also developed to compute the parameters of
the adaptive randomized matrix with reduced computational complexity. We also
derive the upper bound of the error probability of a cooperative MIMO system
employing the randomized space-time coding scheme first. The simulation results
show that the proposed algorithms obtain significant performance gains as
compared to existing DSTC schemes.Comment: 4 figure
Automated mixed traffic vehicle control and scheduling study
The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information
Distributed Space-Time Coding Based on Adjustable Code Matrices for Cooperative MIMO Relaying Systems
An adaptive distributed space-time coding (DSTC) scheme is proposed for
two-hop cooperative MIMO networks. Linear minimum mean square error (MMSE)
receive filters and adjustable code matrices are considered subject to a power
constraint with an amplify-and-forward (AF) cooperation strategy. In the
proposed adaptive DSTC scheme, an adjustable code matrix obtained by a feedback
channel is employed to transform the space-time coded matrix at the relay node.
The effects of the limited feedback and the feedback errors are assessed.
Linear MMSE expressions are devised to compute the parameters of the adjustable
code matrix and the linear receive filters. Stochastic gradient (SG) and
least-squares (LS) algorithms are also developed with reduced computational
complexity. An upper bound on the pairwise error probability analysis is
derived and indicates the advantage of employing the adjustable code matrices
at the relay nodes. An alternative optimization algorithm for the adaptive DSTC
scheme is also derived in order to eliminate the need for the feedback. The
algorithm provides a fully distributed scheme for the adaptive DSTC at the
relay node based on the minimization of the error probability. Simulation
results show that the proposed algorithms obtain significant performance gains
as compared to existing DSTC schemes.Comment: 6 figure
- …