27 research outputs found

    Changes in antidepressant use by young people and suicidal behavior after FDA warnings and media coverage: quasi-experimental study

    Get PDF
    Objective To investigate if the widely publicized warnings in 2003 from the US Food and Drug Administration about a possible increased risk of suicidality with antidepressant use in young people were associated with changes in antidepressant use, suicide attempts, and completed suicides among young people. Design Quasi-experimental study assessing changes in outcomes after the warnings, controlling for pre-existing trends. Setting Automated healthcare claims data (2000-10) derived from the virtual data warehouse of 11 health plans in the US Mental Health Research Network. Participants Study cohorts included adolescents (around 1.1 million), young adults (around 1.4 million), and adults (around 5 million). Main outcome measures Rates of antidepressant dispensings, psychotropic drug poisonings (a validated proxy for suicide attempts), and completed suicides. Results Trends in antidepressant use and poisonings changed abruptly after the warnings. In the second year after the warnings, relative changes in antidepressant use were −31.0% (95% confidence interval −33.0% to −29.0%) among adolescents, −24.3% (−25.4% to −23.2%) among young adults, and −14.5% (−16.0% to −12.9%) among adults. These reflected absolute reductions of 696, 1216, and 1621 dispensings per 100 000 people among adolescents, young adults, and adults, respectively. Simultaneously, there were significant, relative increases in psychotropic drug poisonings in adolescents (21.7%, 95% confidence interval 4.9% to 38.5%) and young adults (33.7%, 26.9% to 40.4%) but not among adults (5.2%, −6.5% to 16.9%). These reflected absolute increases of 2 and 4 poisonings per 100 000 people among adolescents and young adults, respectively (approximately 77 additional poisonings in our cohort of 2.5 million young people). Completed suicides did not change for any age group. Conclusions Safety warnings about antidepressants and widespread media coverage decreased antidepressant use, and there were simultaneous increases in suicide attempts among young people. It is essential to monitor and reduce possible unintended consequences of FDA warnings and media reporting

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent

    An expanded evaluation of protein function prediction methods shows an improvement in accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio

    Reducing affinity as a strategy to boost immunomodulatory antibody agonism

    No full text
    Antibody responses during infection and vaccination typically undergo affinity maturation to achieve high-affinity binding for efficient neutralization of pathogens1,2. Similarly, high affinity is routinely the goal for therapeutic antibody generation. However, in contrast to naturally occurring or direct-targeting therapeutic antibodies, immunomodulatory antibodies, which are designed to modulate receptor signalling, have not been widely examined for their affinity-function relationship. Here we examine three separate immunologically important receptors spanning two receptor superfamilies: CD40, 4-1BB and PD-1. We show that low rather than high affinity delivers greater activity through increased clustering. This approach delivered higher immune cell activation, in vivo T cell expansion and antitumour activity in the case of CD40. Moreover, an inert anti-4-1BB monoclonal antibody was transformed into an agonist. Low-affinity variants of the clinically important antagonistic anti-PD-1 monoclonal antibody nivolumab also mediated more potent signalling and affected T cell activation. These findings reveal a new paradigm for augmenting agonism across diverse receptor families and shed light on the mechanism of antibody-mediated receptor signalling. Such affinity engineering offers a rational, efficient and highly tuneable solution to deliver antibody-mediated receptor activity across a range of potencies suitable for translation to the treatment of human disease

    Agonistic CD27 antibody potency is determined by epitope-dependent receptor clustering augmented through Fc-engineering

    No full text
    Agonistic CD27 monoclonal antibodies (mAb) have demonstrated impressive anti-tumour efficacy in multiple preclinical models but modest clinical responses. This might reflect current reagents delivering suboptimal CD27 agonism. Here, using a novel panel of CD27 mAb including a clinical candidate, we investigate the determinants of CD27 mAb agonism. Epitope mapping and in silico docking analysis show that mAb binding to membrane-distal and external-facing residues are stronger agonists. However, poor epitope-dependent agonism could partially be overcome by Fc-engineering, using mAb isotypes that promote receptor clustering, such as human immunoglobulin G1 (hIgG1, h1) with enhanced affinity to Fc gamma receptor (FcγR) IIb, or hIgG2 (h2). This study provides the critical knowledge required for the development of agonistic CD27 mAb that are potentially more clinically efficacious

    Immunotherapy targeting inhibitory Fcγ receptor IIB (CD32b) in the mouse is limited by monoclonal antibody consumption and receptor internalization

    No full text
    Abstract Genetic deficiency of the inhibitory Fc receptor, FcγRIIB (CD32b), has been shown to augment the activity of activatory FcγR and promote mAb immunotherapy. To investigate whether mAbs capable of blocking FcγRIIB have similar capacity, we recently generated a panel of specific anti-mouse FcγRIIB mAbs that do not cross-react with other FcRs, allowing us to study the potential of FcγRIIB as a therapeutic target. Previous work revealed a number of these mAbs capable of eliciting programmed cell death of targets, and in the present study we demonstrated their ability to promote target cell phagocytosis. However, in a variety of murine tumor models, anti-FcγRIIB mAbs demonstrated limited therapeutic activity despite optimized treatment regimens. Unexpectedly, we observed that the anti-FcγRIIB mAbs are rapidly and extensively consumed in vivo, both by the tumor and host cells, including B cells, leading to a precipitous loss from the circulation. Closer analysis revealed that the anti-FcγRIIB mAbs become extensively internalized from the cell surface within 24 h in vivo, likely explaining their suboptimal efficacy. Subsequent studies revealed that anti-FcγRIIB mAb immunotherapy was effective when used against FcγRIIB+ tumors in FcγRIIB−/− recipients, indicating that consumption of the mAb by nontumor cells is the primary limitation of these reagents. Importantly, similar rates of internalization were not seen on human target cells, at least in vitro. These studies further highlight the need to determine the propensity of mAb therapeutics to internalize target receptors and also identify potential key differences between human and mouse cells in this respect.</jats:p

    Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments.

    No full text
    BACKGROUND: Despite extensive clinical use, the mechanisms that lead to therapeutic resistance to anti-programmed cell-death (PD)-1 monoclonal antibodies (mAbs) remain elusive. Here, we sought to determine how interactions between the Fc region of anti-PD-1 mAbs and Fcγ receptors (FcγRs) affect therapeutic activity and how these are impacted by the immune environment. METHODS: Mouse and human anti-PD-1 mAbs with different Fc binding profiles were generated and characterized in vitro. The ability of these mAbs to elicit T-cell responses in vivo was first assessed in a vaccination setting using the model antigen ovalbumin. The antitumor activity of anti-PD-1 mAbs was investigated in the context of immune 'hot' MC38 versus 'cold' neuroblastoma tumor models, and flow cytometry performed to assess immune infiltration. RESULTS: Engagement of activating FcγRs by anti-PD-1 mAbs led to depletion of activated CD8 T cells in vitro and in vivo, abrogating therapeutic activity. Importantly, the extent of this Fc-mediated modulation was determined by the surrounding immune environment. Low FcγR-engaging mouse anti-PD-1 isotypes, which are frequently used as surrogates for human mAbs, were unable to expand ovalbumin-reactive CD8 T cells, in contrast to Fc-null mAbs. These results were recapitulated in mice expressing human FcγRs, in which clinically relevant hIgG4 anti-PD-1 led to reduced endogenous expansion of CD8 T cells compared with its engineered Fc-null counterpart. In the context of an immunologically 'hot' tumor however, both low-engaging and Fc-null mAbs induced long-term antitumor immunity in MC38-bearing mice. Finally, a similar anti-PD-1 isotype hierarchy was demonstrated in the less responsive 'cold' 9464D neuroblastoma model, where the most effective mAbs were able to delay tumor growth but could not induce long-term protection. CONCLUSIONS: Our data collectively support a critical role for Fc:FcγR interactions in inhibiting immune responses to both mouse and human anti-PD-1 mAbs, and highlight the context-dependent effect that anti-PD-1 mAb isotypes can have on T-cell responses. We propose that engineering of Fc-null anti-PD-1 mAbs would prevent FcγR-mediated resistance in vivo and allow maximal T-cell stimulation independent of the immunological environment

    Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcγRIIB (CD32B)

    No full text
    Fc receptors (FcRs) play a key role in regulating and coordinating responses from both innate and adaptive arms of the immune system. The inhibitory Fc gamma receptor II (FcγRIIB; CD32) is central to this regulation with FcγRIIB−/− mice demonstrating augmented responses to mAb immunotherapy, elevated incidence and severity of auto-immunity, and increased response to mAb-mediated cancer therapy. To date, these observations have remained unexploited therapeutically, partly through a lack of specific mAb reagents capable of exclusively binding mouse FcγRIIB. Thus almost all of the FcγRIIB-binding mAb currently available, such as 2.4G2, also bind FcγRIII (CD16), and polyclonal reagents have limited availability and are of unproven specificity and avidity, making in vivo manipulation of FcγRIIB impossible. Following an extensive immunisation protocol using FcγRIIB−/− mice, we recently produced three unique mAb that are suitable for this purpose. Here we characterise these novel reagents and demonstrate that they fall into two distinct categories; those which cause phosphorylation and subsequent activation of FcγRIIB (agonistic) and those that block receptor phosphorylation (antagonistic). These two types of mAb exhibit different characteristics in a range of biochemical, cellular, and functional assays relevant to FcγRIIB activity and mAb therapy

    Augmentation of CD134 (OX40)-dependent NK anti-tumour activity is dependent on antibody crosslinking

    No full text
    CD134 (OX40) is a member of the tumour necrosis factor receptor superfamily (TNFRSF). It acts as a costimulatory receptor on T cells, but its role on NK cells is poorly understood. CD137, another TNFRSF member has been shown to enhance the anti-tumour activity of NK cells in various malignancies. Here, we examine the expression and function of CD134 on human and mouse NK cells in B-cell lymphoma. CD134 was transiently upregulated upon activation of NK cells in both species. In contrast to CD137, induction of CD134 on human NK cells was dependent on close proximity to, or cell-to-cell contact with, monocytes or T cells. Stimulation with an agonistic anti-CD134 mAb but not CD134 ligand, increased IFNγ production and cytotoxicity of human NK cells, but this was dependent on simultaneous antibody:Fcγ receptor binding. In complementary murine studies, intravenous inoculation with BCL1 lymphoma into immunocompetent syngeneic mice resulted in transient upregulation of CD134 on NK cells. Combination treatment with anti-CD20 and anti-CD134 mAb produced a synergistic effect with durable remissions. This therapeutic benefit was abrogated by NK cell depletion and in Fcγ chain −/− mice. Hence, anti-CD134 agonists may enhance NK-mediated anti-tumour activity in an Fcγ receptor dependent fashion
    corecore