2 research outputs found

    Ecosystem Functioning of Great Salt Lake Wetlands

    Get PDF
    The Great Salt Lake (GSL) wetlands account for ~75% of all Utah wetlands and provide not only critical habitat for millions of migratory birds, but also provide valuable ecosystem functions and services as well as economic benefits to Utahns. However, these wetlands are facing an aggressive invader, Phragmites australis, that has spreading across the GSL wetlands and replacing native wetland habitats. Wetland managers have spent countless resources and time trying to control the spread of P. australis and restore GSL wetlands. However, we do not fully understand how these wetlands functions and services are being altered with this habitat homogenization because functional data for our wetland species have not been well documented. This lack of knowledge may hinder wetland restoration efforts. To create baseline functional data for the GSL wetland species and better understand how the spread of P. australis might be affecting the overall health of the system, I measured eight individual ecosystem functions for seven dominant habitat types found across the GSL wetlands. I compared these individual functions across habitat types as well as created two different multifunctionality indices using an averaging and a thresholds approach. With these comparisons, I was able to determine the distinct functional strengths of different wetland habitat types and their overall functional abilities. I found that functional abilities varied greatly by habitat type and that not one single habitat could support every function even at the lowest threshold measured. I found that Typha latifolia, Schoenoplectus acutus, and P. australis, had the highest multifunctional values. However, I also found that some habitats offered unique functions, such as Salicornia rubra and playa, and that these functions were lacking in other habitats, including the most multifunctional habitats. These findings suggest that maintaining habitat heterogeneity will be critical in ensuring a fully functioning wetland system that can provide a multitude of ecosystems services that benefit both humans and wildlife. The findings of this study will supply wetland managers with a better understanding of the functional strengths of different wetland habitats. This data will aid in ongoing restoration efforts by enabling managers to target certain functions and create more efficient and effective management plans

    Protecting Endangered Species in the USA Requires Both Public and Private Land Conservation

    Get PDF
    Crucial to the successful conservation of endangered species is the overlap of their ranges with protected areas. We analyzed protected areas in the continental USA to assess the extent to which they covered the ranges of endangered tetrapods. We show that in 80% of ecoregions, protected areas offer equal (25%) or worse (55%) protection for species than if their locations were chosen at random. Additionally, we demonstrate that it is possible to achieve sufficient protection for 100% of the USA’s endangered tetrapods through targeted protection of undeveloped public and private lands. Our results highlight that the USA is likely to fall short of its commitments to halting biodiversity loss unless more considerable investments in both public and private land conservation are made
    corecore