54 research outputs found
Selective Plane Illumination Microscopy
Selective plane illumination microscopy (SPIM), or light sheet microscopy, is a microscopy technique that allows you to acquire high resolution fluorescence images of biological samples by illuminating the sample with a thin plane from the side, instead of along the imaging axis as in traditional transillumination or epi-illumination. The purpose of this SPIM research assignment was to combine two previously built systems, an inverted SPIM and a tunable lens system. This report includes use of optics, coupling lasers and proper technique to building optical systems. Programming in Matlab, LabVIEW, and other programming languages was used to synchronize the shutter and camera electronics and acquire and process images. The paper is concluded with expected results to ensure to detection path is optimized.https://engagedscholarship.csuohio.edu/u_poster_2015/1063/thumbnail.jp
Selective Plane Illumination Microscopy
Selective plane illumination microscopy (SPIM), or light sheet microscopy, is a microscopy technique that allows you to acquire high resolution fluorescence images of biological samples by illuminating the sample with a thin plane from the side, instead of along the imaging axis as in traditional transillumination or epi-illumination. The purpose of this SPIM research assignment was to combine two previously built systems, an inverted SPIM and a tunable lens system. This report includes use of optics, coupling lasers and proper technique to building optical systems. Programming in Matlab, LabVIEW, and other programming languages was used to synchronize the shutter and camera electronics and acquire and process images. The paper is concluded with expected results to ensure to detection path is optimized.https://engagedscholarship.csuohio.edu/u_poster_2015/1063/thumbnail.jp
Functional gene group analysis indicates no role for heterotrimeric G proteins in cognitive ability
Previous functional gene group analyses implicated common single nucleotide polymorphisms (SNPs) in heterotrimeric G protein coding genes as being associated with differences in human intelligence. Here, we sought to replicate this finding using five independent cohorts of older adults including current IQ and childhood IQ, and using both gene- and SNP-based analytic strategies. No significant associations were found between variation in heterotrimeric G protein genes and intelligence in any cohort at either of the two time points. These results indicate that, whereas G protein systems are important in cognition, common genetic variation in these genes is unlikely to be a substantial influence on human intelligence differences
American Choral Directors Association Preview Concert with Guest Artist Ola Gjeilo, composer
Kennesaw State University School of Music presents the ACDA National Conference American Choral Directors Association Preview Concert with guest artist Ola Gjeilo, composer.https://digitalcommons.kennesaw.edu/musicprograms/1337/thumbnail.jp
Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences
AbstractTwo themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences
Pleiotropic meta-analysis of cognition, education, and schizophrenia differentiates roles of early neurodevelopmental and adult synaptic pathways
Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected (“concordant”) direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive (“discordant”) relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10−8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms—early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways—that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness
Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics
Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.Peer reviewe
Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function
Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity
Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan
Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity
Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan
- …