20 research outputs found

    Relative rank axioms for infinite matroids

    Full text link
    In a recent paper, Bruhn, Diestel, Kriesell and Wollan (arXiv:1003.3919) present four systems of axioms for infinite matroids, in terms of independent sets, bases, closure and circuits. No system of rank axioms is given. We give an easy example showing that rank function of an infinite matroid may not suffice to characterize it. We present a system of axioms in terms of relative rank.Comment: The results in this paper have now been merged into arXiv:1003.391

    Counting matroids in minor-closed classes

    Full text link
    A flat cover is a collection of flats identifying the non-bases of a matroid. We introduce the notion of cover complexity, the minimal size of such a flat cover, as a measure for the complexity of a matroid, and present bounds on the number of matroids on nn elements whose cover complexity is bounded. We apply cover complexity to show that the class of matroids without an NN-minor is asymptotically small in case NN is one of the sparse paving matroids U2,kU_{2,k}, U3,6U_{3,6}, P6P_6, Q6Q_6, or R6R_6, thus confirming a few special cases of a conjecture due to Mayhew, Newman, Welsh, and Whittle. On the other hand, we show a lower bound on the number of matroids without M(K4)M(K_4)-minor which asymptoticaly matches the best known lower bound on the number of all matroids, due to Knuth.Comment: 13 pages, 3 figure

    Reconstructing a phylogenetic level-1 network from quartets

    Get PDF
    We describe a method that will reconstruct an unrooted binary phylogenetic level-1 network on n taxa from the set of all quartets containing a certain fixed taxon, in O(n^3) time. We also present a more general method which can handle more diverse quartet data, but which takes O(n^6) time. Both methods proceed by solving a certain system of linear equations over GF(2). For a general dense quartet set (containing at least one quartet on every four taxa) our O(n^6) algorithm constructs a phylogenetic level-1 network consistent with the quartet set if such a network exists and returns an (O(n^2) sized) certificate of inconsistency otherwise. This answers a question raised by Gambette, Berry and Paul regarding the complexity of reconstructing a level-1 network from a dense quartet set

    On the number of matroids

    Get PDF
    We consider the problem of determining mnm_n, the number of matroids on nn elements. The best known lower bound on mnm_n is due to Knuth (1974) who showed that loglogmn\log \log m_n is at least n3/2logn1n-3/2\log n-1. On the other hand, Piff (1973) showed that loglogmnnlogn+loglogn+O(1)\log\log m_n\leq n-\log n+\log\log n +O(1), and it has been conjectured since that the right answer is perhaps closer to Knuth's bound. We show that this is indeed the case, and prove an upper bound on loglogmn\log\log m_n that is within an additive 1+o(1)1+o(1) term of Knuth's lower bound. Our proof is based on using some structural properties of non-bases in a matroid together with some properties of independent sets in the Johnson graph to give a compressed representation of matroids.Comment: Final version, 17 page

    An entropy argument for counting matroids

    Full text link
    We show how a direct application of Shearers' Lemma gives an almost optimum bound on the number of matroids on nn elements.Comment: Short note, 4 page

    Server allocation algorithms for tiered systems

    No full text
    Many web-based systems have a tiered application architecture, in which a request needs to transverse all the tiers before finishing its processing. One of the most important QoS metrics for these applications is the expected response time for the user. Since the expected response time in any tier depends upon the number of servers allocated to this tier, and a request's total response time is the sum of the response times over all the tiers, many different configurations (number of servers allocated to each tier) can satisfy the expected response-time requirement. Naturally, one would like to find the configuration that minimizes the total system cost while satisfying the total response-time requirement. This is modeled as a non-linear optimization problem using an open-queuing network model of response time, which we call the server allocation problem for tiered systems (SAPTS). In this paper we study the computational complexity of SAPTS and design efficient algorithms to solve it. For a variable number of tiers, we show that the decision version of SAPTS is NP-complete. Then we design a simple two-approximation algorithm and a fully polynomial-time approximation scheme (FPTAS). If the number of tiers is a constant, we show that SAPTS is polynomial-time solvable. Furthermore, we design a fast polynomial-time exact algorithm to solve the important two-tier case. Most of our results extend to the general case in which each tier has an arbitrary response-time function

    New Korkin–Zolotarev Inequalities

    No full text
    corecore