149 research outputs found
Changes in prescribing for bipolar disorder between 2009 and 2016: national-level data linkage study in Scotland
Background:
People with bipolar disorder typically require long-term pharmacological treatment to prevent episodes of depression or mania. However, evidence-based guidelines are often not followed by prescribers and, in some countries, prescribing of lithium is in decline. Polypharmacy is also common in bipolar disorder.
Aims:
To employ a data linkage approach to describe and evaluate prescribing patterns in bipolar disorder in Scotland between 2009 and 2016.
Method:
By linking prescribing data to the electronic Scottish Morbidity Records, we identified a cohort of 23 135 patients with bipolar disorder who were prescribed psychotropic medication between 2009 and 2016. We examined trends in proportions of patients prescribed each of six drug categories. Random effects logistic models examined change in prescribing over years of interest.
Results:
The most common form of treatment was antidepressant monotherapy (24.96%), with only 5.90% of patients receiving lithium monotherapy. Prescribing of antipsychotics and anti-epileptics increased from 2009 to 2016 (antipsychotics: odds ratio 1.16, 95% CI 1.15–1.18; anti-epileptics: odds ratio 1.34, 95% CI 1.32–1.36), whereas prescribing of lithium decreased (odds ratio 0.83, 95% CI 0.82–0.85). Prescribing of valproate decreased from 2009–2016 in women, but increased in men (women: odds ratio 0.93, 95% CI 0.90–0.97; men: odds ratio 1.11, 95% CI 1.04–1.18).
Conclusions:
Antidepressant monotherapy was the most common form of treatment for bipolar disorder in Scotland and prescribing of lithium has declined between 2009 and 2016. The findings are concerning and represent a gap between treatment guidelines and clinical practice.
Declaration of interest:
None
Staphylococcus aureus in animals
Staphylococcus aureus is a mammalian commensal and opportunistic pathogen that colonizes niches such as skin, nares and diverse mucosal membranes of about 20-30% of the human population. S. aureus can cause a wide spectrum of diseases in humans and both methicillin-sensitive and methicillin-resistant strains are common causes of nosocomial- and community-acquired infections. Despite the prevalence of literature characterising staphylococcal pathogenesis in humans, S. aureus is a major cause of infection and disease in a plethora of animal hosts leading to a significant impact on public health and agriculture. Infections in animals are deleterious to animal health, and animals can act as a reservoir for staphylococcal transmission to humans.
Host-switching events between humans and animals and amongst animals are frequent and have been accentuated with the domestication and/or commercialisation of specific animal species. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements such as phages, pathogenicity islands and plasmids as well as further host-specific mutations allowing it to expand into new host populations.
In this chapter, we will be giving an overview of S. aureus in animals, how this bacterial species was, and is, being transferred to new host species and the key elements thought to be involved in its adaptation to new ecological host niches. We will also highlight animal hosts as a reservoir for the development and transfer of antimicrobial resistance determinants
Environmental and social impact assessment of optimized post-tensioned concrete road bridges
[EN] Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.This research was funded by the Ministerio de Economia, Ciencia y Competitividad and FEDER funding grant number [BIA2017-85098-R]Penades-Pla, V.; Martínez-Muñoz, D.; García-Segura, T.; Navarro, IJ.; Yepes, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability. 12(10):4265-01-4265-18. https://doi.org/10.3390/su12104265S4265-014265-18121
Phage-inducible chromosomal islands as a diagnostic platform to capture and detect bacterial pathogens
Phage-inducible chromosomal islands (PICIs) are a family of phage satellites that hijack phage components to facilitate their mobility and spread. Recently, these genetic constructs are repurposed as antibacterial drones, enabling a new toolbox for unorthodox applications in biotechnology. To illustrate a new suite of functions, the authors have developed a user-friendly diagnostic system, based upon PICI transduction to selectively enrich bacteria, allowing the detection and sequential recovery of Escherichia coli and Staphylococcus aureus. The system enables high transfer rates and sensitivities in comparison with phages, with detection down to ≈50 CFU mL−1. In contrast to conventional detection strategies, which often rely on nucleic acid molecular assays, and cannot differentiate between dead and live organisms, this approach enables visual sensing of viable pathogens only, through the expression of a reporter gene encoded in the PICI. The approach extends diagnostic sensing mechanisms beyond cell-free synthetic biology strategies, enabling new synthetic biology/biosensing toolkits
The bacteriophage-phage-inducible chromosomal island arms race designs an interkingdom inhibitor of dUTPases
Stl, the master repressor of the Staphylococcus aureus pathogenicity islands (SaPIs), targets phage-encoded proteins to derepress and synchronize the SaPI and the helper phage life cycles. To activate their cycle, some SaPI Stls target both phage dimeric and phage trimeric dUTPases (Duts) as antirepressors, which are structurally unrelated proteins that perform identical functions for the phage. This intimate link between the SaPI’s repressor and the phage inducer has imposed an evolutionary optimization of Stl that allows the interaction with Duts from unrelated organisms. In this work, we structurally characterize this sophisticated mechanism of specialization by solving the structure of the prototypical SaPIbov1 Stl in complex with a prokaryotic and a eukaryotic trimeric Dut. The heterocomplexes with Mycobacterium tuberculosis and Homo sapiens Duts show the molecular strategy of Stl to target trimeric Duts from different kingdoms. Our structural results confirm the participation of the five catalytic motifs of trimeric Duts in Stl binding, including the C-terminal flexible motif V that increases the affinity by embracing Stl. In silico and in vitro analyses with a monomeric Dut support the capacity of Stl to recognize this third family of Duts, confirming this protein as a universal Dut inhibitor in the different kingdoms of life
Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding
We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range, demonstrated for the first time in this platform. The waveguide propagation loss of 0.82 dB/cm is reported, some of the lowest loss yet achieved in silicon waveguides for this wavelength range. These results establish a direct path to ultimately extending the operational wavelength range of silicon wire waveguides to the entire transparency window of silicon
III-V-on-silicon integrated micro - spectrometer for the 3 μm wavelength range
A compact (1.2 mm(2)) fully integrated mid-IR spectrometer operating in the 3 mu m wavelength range is presented. To our knowledge this is the longest wavelength integrated spectrometer operating in the important wavelength window for spectroscopy of organic compounds. The spectrometer is based on a silicon-on-insulator arrayed waveguide grating filter. An array of InAs0.91Sb0.09 p-i-n photodiodes is heterogeneously integrated on the spectrometers output grating couplers using adhesive bonding. The spectrometer insertion loss is less than 3 dB and the waveguide-referred responsivity of the integrated photodiodes at room temperature is 0.3 A/W. (C) 2016 Optical Society of Americ
Hijacking the hijackers: Escherichia coli pathogenicity islands redirect helper phage packaging for their own benefit
Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gram-negative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution
Biofilms bacterianos e infección
En los países desarrollados tendemos a pensar que las principales causas de mortalidad son las enfermedades cardiovasculares y el cáncer en sus múltiples modalidades. Sin embargo, los datos en Europa resultan elocuentes; las enfermedades infecciosas representan la segunda causa de mortalidad (14,9 millones de muertes), después de las enfermedades cardiovasculares (16,9 millones de muertes) y causan el doble de muertes que el cáncer (7,1 millones de muertes) (datos del World Health Organization, WHO, 2002). Los agentes infecciosos responsables de mortalidad en el hombre han ido evolucionando a medida que las medidas higiénicas y las técnicas médicas han ido evolucionando. Actualmente, las enfermedades infecciosas agudas causadas por bacterias patógenas especializadas como la difteria, tétanos, peste, cólera o la tosferina, que representaban la principal causa de muerte a principios del siglo XX, han sido controladas gracias a la acción de los antibióticos y de las vacunas. En su lugar, más de la mitad de las infecciones que afectan a pacientes ligeramente inmunocomprometidos son producidas por bacterias ubicuas, capaces de producir infecciones de tipo crónico, que responden pobremente a los tratamientos antibióticos y no pueden prevenirse mediante inmunización. Ejemplos de estas infecciones son la otitis media, endocarditis de válvulas nativas, infecciones urinarias crónicas, infecciones de próstata, osteomielitis y todas las infecciones relacionadas con implantes. El análisis directo de los implantes y tejidos de estas infecciones muestra claramente que en la mayoría de los casos la bacteria responsable de la infección crece adherida sobre el tejido o el implante formando comunidades de bacterias a las que se les ha denominado “biofilms”. Dentro del biofilm, las bacterias están protegidas de la acción de los anticuerpos, del ataque de las células fagocíticas y de los tratamientos antimicrobianos. En este artículo se describe el papel que juegan los biofilms en infecciones humanas persistentes
Silicon-based photonic integrated circuits for the mid-infrared
AbstractSilicon-based photonic integrated circuits (PICs) operating in the mid-infrared wavelength range are presented. Firstly, it is shown that the operation of the SOI-based waveguide circuits can be pushed beyond the telecom window till a wavelength of 4μm. Ge-on-Si based PICs are demonstrated for operation beyond 4μm wavelength. Low-loss waveguides and integrated spectrometers are reported for both the waveguide platforms. We also present our results on efficient thermo-optic phase shifters for germanium waveguide circuits
- …