11,584 research outputs found
Solar Neutrinos
The study of solar neutrinos has given since ever a fundamental contribution
both to astroparticle and to elementary particle physics, offering an ideal
test of solar models and offering at the same time relevant indications on the
fundamental interactions among particles. After reviewing the striking results
of the last two decades, which were determinant to solve the long standing
solar neutrino puzzle and refine the Standard Solar Model, we focus our
attention on the more recent results in this field and on the experiments
presently running or planned for the near future. The main focus at the moment
is to improve the knowledge of the mass and mixing pattern and especially to
study in detail the lowest energy part of the spectrum, which represents most
of solar neutrino spectrum but is still a partially unexplored realm. We
discuss this research project and the way in which present and future
experiments could contribute to make the theoretical framemork more complete
and stable, understanding the origin of some "anomalies" that seem to emerge
from the data and contributing to answer some present questions, like the exact
mechanism of the vacuum to matter transition and the solution of the so called
solar metallicity problem.Comment: 51 pages, to be published in Special Issue on Neutrino Physics,
Advances in High Energy Physics Hindawi Publishing Corporation 201
Anisotropic microsphere-based approach to damage in soft fibered tissue
The final publication is available at Springer via http://dx.doi.org/10.1007/s10237-011-0336-9An anisotropic damage model for soft fibered tissue is presented in this paper, using a multi-scale scheme and focusing on the directionally dependent behavior of these materials. For this purpose, a micro-structural or, more precisely, a microsphere-based approach is used to model the contribution of the fibers. The link between micro-structural contribution and macroscopic response is achieved by means of computational homogenization, involving numerical integration over the surface of the unit sphere. In order to deal with the distribution of the fibrils within the fiber, a von Mises probability function is incorporated, and the mechanical (phenomenological) behavior of the fibrils is defined by an exponential-type model. We will restrict ourselves to affine deformations of the network, neglecting any cross-link between fibrils and sliding between fibers and the surrounding ground matrix. Damage in the fiber bundles is introduced through a thermodynamic formulation, which is directly included in the hyperelastic model. When the fibers are stretched far from their natural state, they become damaged. The damage increases gradually due to the progressive failure of the fibrils that make up such a structure. This model has been implemented in a finite element code, and different boundary value problems are solved and discussed herein in order to test the model features. Finally, a clinical application with the material behavior obtained from actual experimental data is also presented.Peer ReviewedPostprint (author's final draft
- …