6,777 research outputs found

    Teaching intervention to enhance HIV infection awareness in a biomedical science degree

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Condom use remains the predominant prophylactic intervention to control rates of human immunodeficiency virus (HIV) infection. However, chemoprophylactic strategies, which involve pre-exposure prophyaxis (PrEP) and post-exposure prophyaxis (PEP), have emerged as appropriate prevention tools to minimise and prevent future infections. Different studies have indicated that PrEP can prevent new HIV infections among men who have sex with men when used daily or event-based, and it is also effective with heterosexuals and people who inject drugs. However, appropriate education is needed as recent reports have observed a decline in adherence to PrEP over time, particularly in young adults, which will impact on the effectiveness of PrEP. Thus, we created a brief educational short intervention (3 hours) to increase the awareness of HIV with second year BMedSci Medical Science (Hons) students at De Montfort University (DMU, UK) in 2016/17 (Peña-Fernández et al., 2017). Briefly, BMedSci students tailored a community-centred intervention programme to reduce HIV infection rates following evidence-based public health methodology. 92% indicated an acquisition of knowledge for preventing HIV transmission and tools to fight this disease. However, BMedSci students also showed a lack of knowledge of preventative measures (PrEP and PEP), routes of transmission and appropriate screening. We implemented a similar teaching strategy with BSc Biomedical Science (BMS) students enrolled in the level 4 module of Basic Microbiology in 2017/18, but limited to two hours: one-hour lecture and one hour workshop in which different HIV prevention strategies were discussed and analysed by students. BMS students were also provided with an overview about the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90:90:90 targets in the UK (2016). In a similar way as with the BMedSci cohort, BMS students showed little awareness about PEP/PrEP, specifically knowledge about what are they/how they work, access and usage. This teaching intervention was well-received by students according to the feedback provided in the final module level feedback. BMS participants (n=27 out of 187 students) indicated that they enjoyed the session and suggested a practical session and the introduction of case studies to enhance the teaching intervention. We are developing a virtual clinical case study on HIV following recent successful experiences in the development and introduction of these novel learning strategies and have performed small modifications in the delivery of this workshop for 2018/19 to increase engagement and interaction. In conclusion, we consider that similar short education interventions that specifically target HIV chemoprophylaxis would be needed in any degree to prevent the decline in adherence to PrEP over time observed in young adults and reduce PEP/PrEP stigma and other barriers which could impede their access

    Acoustic analysis of starting jets in an anechoic chamber: implications for volcano monitoring

    Get PDF
    Explosive volcanic eruptions are associated with a plethora of geophysical signals. Among them, acoustic signals provide ample information about eruptive dynamics and are widely used for monitoring purposes. However, a mechanistic correlation of monitoring signals, underlying source processes and reasons for short-term variations is incomplete. Scaled laboratory experiments can mimic a wide range of explosive volcanic eruption conditions. Here, starting (non-steady) compressible gas jets are created using a shock tube in an anechoic chamber and their acoustic signature is recorded with a microphone array. Noise sources are mapped in time and frequency using wavelet analysis and their dependence from pressure ratio, non-dimensional mass supply and exit-to-throat area ratio is deciphered. We observed that the pressure ratio controls the establishment of supersonic conditions and their duration, and influences the interaction between shock, shear layer, and vortex ring. The non-dimensional mass supply affects the duration of the discharge, the maximum velocity of the flow, and the existence of a trailing jet. Lower values of exit-to-throat area ratio induce a faster decay of the acoustic fingerprint of the jet flow. The simplistic experiments presented here, and their acoustic analysis will serve as an essential starting point to infer source conditions prior to and during impulsive volcanic eruptions

    Evaluating the effect of age and area of residence in the metal and metalloid contents in human hair and urban topsoils

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Monitoring the levels of trace elements in hair can allow estimating the effects of the geographical location and also can provide a notion of the metal body burden. However, the use of human hair is controversial due to the different confounding factors that could affect the presence of trace elements in hair. As a result, a comprehensive monitoring study was performed in Alcalá de Henares, one of the major cities in the Madrid region, Spain. Trace elements have been monitored in urban topsoils and in human hair of two well-defined and healthy groups of population: children (6–9 years) and adolescents (13–16 years). The city was divided into four areas or zones with different characteristics to assess the possible effect of area of residence and age in the presence of Al, As, Be, Cd, Cr, Cu, Hg, Mn, Pb, Sn, Ti, Tl and Zn in soils and hair. There is no current hypothesis that explains the possible effect of the area of monitoring in the distribution of Be, Cr, Ni, Sn and Ti found in these urban soils, maybe because urban soils receive high disturbance, and there are many factors involved. The presence of most of the trace elements monitored was significantly higher in the hair of the children population, except for Sn and Zn. This could be attributed mainly to dietary habits. Other factors influencing metal content in hair such as environmental factors would have had a minimal effect in the population groups here studied. Finally, none of the levels of trace elements studied in hair were significantly correlated with levels measured in the topsoils of public parks in Alcalá de Henares, with the exception of Pb in adolescent participants

    Evaluation of a novel digital environment for learning medical parasitology.

    Get PDF
    open access articleEukaryotic parasites represent a serious human health threat requiring health professionals with parasitology skills to counteract this threat. However, recent surveys highlight an erosion of teaching of parasitology in medical and veterinary schools, despite reports of increasing instances of food and water borne parasitic infections. To address this we developed a web-based resource, DMU e-Parasitology®, to facilitate the teaching and learning of parasitology, comprising four sections: theoretical; virtual laboratory; virtual microscopy; virtual clinical case studies. Testing the package was performed using a questionnaire given to ninety-five Pharmacy students in 2017/18 to assess effectiveness of the package as a teaching and learning tool. 89.5% of students reported appropriate acquisition of knowledge of the pathology, prevention and treatment of some parasitic diseases. 82.1% also welcomed the clinical specialism of the package as it helped them to acquire basic diagnostic skills, through learning infective features/morphology of the parasites

    Negative capacitance in multidomain ferroelectric superlattices

    Get PDF
    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories1. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices2, 3, 4. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative5, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors6. However, experimental demonstrations of this phenomenon remain contentious7. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation8, 9, but the effect of domains on negative capacitance has received little attention5, 10, 11, 12. Here we report negative capacitance in a model system of multidomain ferroelectric–dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation

    VIRTUAL CASE STUDIES IN THE NOVEL RESOURCE DMU E-PARASITOLOGY

    Get PDF
    A novel on-line package for teaching and learning human parasitology, named DMU e-Parasitology, is being co-developed by academics from De Montfort University (DMU, Leicester, UK) and the Spanish universities: University of San Pablo CEU and Miguel Hernández University, in conjunction with practicing Biomedical Scientists from the UK National Health Service. The DMU e-Parasitology [1] package will be freely available on the DMU website (http://parasitology.dmu.ac.uk/) late in 2018 and content/sections currently covered: a theoretical unit for the study of eukaryotic parasites that represent serious human health threats; a virtual laboratory and microscope sections for the study of these major diseases. However, for promoting active learning and increasing engagement, we are in the process of developing a fourth section with a series of virtual case studies in medical parasitology, in which students will need to reflect and critically think to reach diagnoses, propose additional diagnostic techniques and appropriate treatment. The virtual case studies will be created following a preliminary study performed by our group [2,3], in which we observed that the introduction of mini- case studies in Medical Microbiology lectures [BSc Biomedical Science (BMS), DMU] last academic course were shown to be effective in facilitating the acquisition of transversal competences including clinical skills. These mini-case studies were based on those developed by the Laboratory Identification of Parasitic Diseases (DPDx) of the Centers for Disease Control and Prevention (CDC, USA) [4] and final year BMS students enrolled in this module were able to complete the case studies during the different lectures in a very short period of time. Contrarily, the virtual case studies for the DMU e- Parasitology will be highly interactive and students will need to use the different resources of this package, including the virtual microscope, to resolve them. Moreover, these case studies will be longer and will present different questions that the user will be able to answer depending on their clinical and parasitology skills. Between the many advantages of a virtual microscope described in the literature, including remote access to slides of high clinical quality for all users, this technological resource could facilitate the acquisition of problem-solving skills and hence the rationale of using it to resolve the case studies of the DMU e-Parasitology. This paper describes the first virtual case study created, which is available at: http://parasitology.dmu.ac.uk/learn/case_studies/cs1/story_html5.html [5]. Briefly: students are presented with a short medical history of an HIV positive male university student severely affected by bloody diarrhoea, malaise and fever; and a series of clinical slides in which trophozoites of Entamoeba histolytica and Acanthamoeba spp. can be observed. The “amoebas” virtual case study is student-friendly; so students can navigate through the case study following a series of questions with different degrees of difficulty related to these human pathogens. Students enrolled in the Medical Microbiology module in 2017/18 (n=193) have answered the amoebas case study during small workshops delivered to groups of 27/28 students during November 2017. Comprehensive student feedback is being collected to improve this case study, as it will be used as a model to complete this section of the DMU e-Parasitology

    Initial outcomes of introducing the study of the Ebola virus in a Biomedical Science degree

    Get PDF
    The Ebola virus disease (EVD) caused by Zaire ebolavirus (EBOV) primarily affected three countries in West Africa during 2013-2016: Guinea, Liberia and Sierra Leone. The index case was infected in Guinea in December 2013, and subsequently spread to neighbouring countries. According to Ebola Situation Reports from the World Health Organisation, a total of 28,616 Ebola cases were reported in West Africa during the pandemic, with 11,310 deaths. This serious pandemic has highlighted gaps and lack of resources and capabilities in health care systems not only in developing countries but also in Western countries that were impacted when responding to the Ebola outbreak. Thus, serious cross- border biological incidents and outbreaks of infection can dramatically threaten human health. However, they can be can be addressed by providing an effective and rapid response from different experts, health professionals and authorities when there are appropriate tools, capabilities and understanding of these biological hazards. Thus, a series of initiatives were put in place at De Montfort University (DMU, UK) in 2016 to provide appropriate knowledge on infectious diseases to BSc Biomedical Science (BMS) students following the subject-specific threshold standards described by the Quality Assurance Agency (QAA, 2015) [1]. Curriculum changes were undertaken mostly in two modules: Basic Microbiology (level 4), after expanding this to 30 credits in the academic course 2016/17; and Medical Microbiology (level 6; 15 credits). Between the comprehensive curriculum changes performed, one of the changes that raised notable interest in BMS students was the introduction of a lecture/seminar in EBOV following our experience as first responders during the Ebola outbreak working as biomedical scientists in different Ebola laboratories built by Public Health England (PHE) in Sierra Leone. The novel methods for teaching EBOV and haemorrhagic infectious diseases have been previously described by our group in Peña-Fernández et al. (2016, 2017) [2,3]; briefly we created two sessions with different degrees of difficulties to be delivered to BMS students studying level 4 or 6, respectively. Students enrolled in Medical Microbiology (level 6) also completed a workshop to respond to outbreaks of infection and protect the public following the steps of evidence- based public health methodology and the lessons learnt when responding to the EBOV outbreak in West Africa in 2015. In this paper we provide a short description of the methods used and recent student feedback collected during the delivery of this workshop in October 2017. The paper will also discuss future improvements that we are undertaking to increase the knowledge of BMS and other health science students including the creation of an e-learning unit to facilitate the study and teaching of EBOV. This novel teaching and learning resource will be publicly available from the DMU website during the first months of 2018; and it is being created following the experience of the development of the first unit for the novel DMU e-Parasitology package [4]. To conclude, the curriculum modifications performed in the BMS programme seemed to facilitate the acquisition of key competences and skills to protect human health in the aftermath of an outbreak of infection

    Silicic Acid and Beer Consumption Reverses the Metal Imbalance and the Prooxidant Status Induced by Aluminum Nitrate in Mouse Brain

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Abstract: Background: Emerging evidence suggests that by affecting mineral balance, aluminum (Al) may enhance some events associated with neurodegenerative diseases. Aim: To examine the effect of Al(NO3)3 exposure on brain Al, cooper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), silicon (Si), and zinc (Zn) levels, and the metal-change implication in brain oxidant and inflammatory status. Methods: Four groups of six-week-old male NMRI mice were treated for three months: i) controls, administrated with deionized water; ii) Al, which received Al(NO3)3; iii) Al+silicic acid, which were given Al(NO3)3 plus silicic acid; and iv) Al+beer, which received Al(NO3)3 plus beer. Results: Brain Al and TBARS levels and TNFα and GPx expressions increased, while Cu, Mn, and Zn levels, and catalase and CuZn-SOD expression decreased (at least, p < 0.05) in Al versus control animals. Al, Si, and TBARS levels and TNFα expression decreased (p < 0.05) in Al+silicic acid and Al+beer specimens while Cu, Mn, and Zn levels and antioxidant expression increased versus the Al group. Brain Al levels correlated negatively with those of Cu, Fe, Mn, and Zn, and catalase, CuZn-SOD, and GPx enzyme expressions but positively with Si and TBARS levels and TNFα expression. Two components of the principal component analysis (PCA) explained 71.2% of total data variance (p < 0.001). PCA connected the pro-oxidant markers with brain Al content, while brain Zn and Cu levels were closer to antioxidant enzyme expression. Conclusion: Administration of Al(NO3)3 induced metal imbalance, inflammation, and antioxidant status impairment in the brain. Those effects were blocked to a significant extent by silicic acid and beer administration

    Building a DMU e-Biology resource for health sciences’ students.

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI linkThe BSc Biomedical Science (BMS) programme at De Montfort University (DMU, Leicester, UK) is accredited by the Institute of Biomedical Science (IBMS). Students enrolled within this programme acquire highly sought after skills related with human health sciences to work in: pathology departments in hospitals; research institutions; biotechnology and pharmaceutical industries; and the education sector to name a few. The degree recruits a large number of students with currently around 600 students enrolled on this programme at DMU. Despite pre-entry requirements of knowledge of subjects related to human biology, biology or chemistry, we have noted that first year students require basic support in STEM subjects (biology, chemistry and mathematics) in modules such as “Basic Microbiology”, “Basic Anatomy and Physiology” and “Chemistry for the Biosciences”. This support is especially necessary for students that come from non-traditional routes such as Business and Technology Education Council (BTEC) routes. Moreover, usually topics related with microbiology and human diseases are challenging for students, often causing stress impacting their overall performance and experience. A group of BMS academics at DMU in conjunction with universities in the European Union (EU; e.g. University of San Pablo CEU, Spain) have started to design, create and develop a series of e-learning resources or units in human biology and BMS for undergraduate students that study health sciences degrees in the EU. These units are being uploaded onto the DMU web server (http://parasitology.dmu.ac.uk/) and will be only accessible for students from participating universities during the first phase of this project (2017/18 course) in which comprehensive feedback will be collected. This web server space has three sections or modules (theoretical section, virtual laboratory and microscope) in which the new e-learning resources will be preliminary accommodated. These units will be interactive and easy to follow, and will cover basic human biology (e.g. cells, cell structure), human anatomy and physiology, histology and basic microbiology, which will be embedded in a theoretical module named DMU e-Biology within the above URL link. They will include formative assessments and case studies throughout each unit. In addition, a series of practical units are being developed which describe routine practical elements in any biomedical laboratory such as laboratory materials, pipetting, molecular techniques (e.g. PCR), cell culture (e.g. use of biological safety cabinet) and histological techniques (e.g. use of microtome, staining techniques). The development of this teaching and learning resource will cover a gap in the traditional teaching and learning methods that are currently used and provided in the participating universities. The DMU e-Biology will aid to our undergraduate students to gain knowledge in human biology and microbiology by promoting self-learning. We consider that the DMU e-Biology will help overcome spatiotemporal, equipment and resource barriers. Additionally, it may help student retention as currently about a 10% of our first year students fail to continue BMS at DMU. Finally, the creation of the DMU e-Biology will also provide support to the DMU Student Retention and Attainment Strategy 2016-2020 through the DMU Student Learning Hub, which is currently under development
    • …
    corecore