27 research outputs found

    Sex ratio selection and multi-factorial sex determination in the housefly:A dynamic model

    Get PDF
    Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (&lt;10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations.</p

    Comparative analysis of sex ratio data

    No full text

    Sex determining mechanisms in vertebrates

    No full text

    Comparative analysis of sex ratio data

    No full text

    Modelling information exchange in worker-queen conflict over sex allocation

    No full text
    We investigate the conflict between queen and worker over sex allocation, specifically the allocation of the queen's eggs between workers and reproductives and the allocation of the reproductive eggs between male and female. In contrast to previous models, we allow workers to observe and use information about the strategy of the queen. We consider three conflict models: simultaneous (no information exchange), sequential (a one-way information exchange) and negotiated (an iterated two-way information exchange). We find that the first model produces sex ratios intermediate between the classic queen (1β€ˆ:β€ˆ1) and worker (1β€ˆ:β€ˆ3) optima. The second model, in which the worker has information about the queen's decisions, produces a different result and one that is somewhat counter-intuitive in that the sex ratios are less female-biased than for the other two models, and in fact are often male-biased. The third model predicts sex ratios intermediate between the first two models. We discuss how these findings may shed new light on observed sex allocation patterns in social insects and we suggest some experimental tests

    Comparative analysis of sex ratio data

    No full text

    Comparative analysis of sex ratio data

    No full text
    corecore