1,238 research outputs found

    Experimental study of digital image processing techniques for LANDSAT data

    Get PDF
    The author has identified the following significant results. Results are reported for: (1) subscene registration, (2) full scene rectification and registration, (3) resampling techniques, (4) and ground control point (GCP) extraction. Subscenes (354 pixels x 234 lines) were registered to approximately 1/4 pixel accuracy and evaluated by change detection imagery for three cases: (1) bulk data registration, (2) precision correction of a reference subscene using GCP data, and (3) independently precision processed subscenes. Full scene rectification and registration results were evaluated by using a correlation technique to measure registration errors of 0.3 pixel rms thoughout the full scene. Resampling evaluations of nearest neighbor and TRW cubic convolution processed data included change detection imagery and feature classification. Resampled data were also evaluated for an MSS scene containing specular solar reflections

    Estimating the functional form for the density dependence from life history data

    Get PDF
    Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments

    Obstetricians and Violence against Women

    Get PDF
    I argue that the American Congress of Obstetricians and Gynecologists (ACOG), as an organization and through its individual members, can and should be a far greater ally in the prevention of violence against women. Specifically, I argue that we need to pay attention to obstetrical practices that inadvertently contribute to the problem of violence against women. While intimate partner violence is a complex phenomenon, I focus on the coercive control of women and adherence to oppressive gender norms. Using physician response to alcohol use during pregnancy and court-ordered medical treatment as examples, I show how some obstetrical practices mirror the attitudes of abusive men insofar as they try to coercively control women\u27s behavior through manipulation and violence. To be greater allies in the prevention of violence against women, obstetricians should stop participating in practices that inadvertently perpetuate violence against women

    A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer.

    Get PDF
    Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations

    Relative costs of offspring sex and offspring survival in a polygynous mammal.

    Get PDF
    Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density

    The role of selection and evolution in changing parturition date in a red deer population.

    Get PDF
    Changing environmental conditions cause changes in the distributions of phenotypic traits in natural populations. However, determining the mechanisms responsible for these changes-and, in particular, the relative contributions of phenotypic plasticity versus evolutionary responses-is difficult. To our knowledge, no study has yet reported evidence that evolutionary change underlies the most widely reported phenotypic response to climate change: the advancement of breeding times. In a wild population of red deer, average parturition date has advanced by nearly 2 weeks in 4 decades. Here, we quantify the contribution of plastic, demographic, and genetic components to this change. In particular, we quantify the role of direct phenotypic plasticity in response to increasing temperatures and the role of changes in the population structure. Importantly, we show that adaptive evolution likely played a role in the shift towards earlier parturition dates. The observed rate of evolution was consistent with a response to selection and was less likely to be due to genetic drift. Our study provides a rare example of observed rates of genetic change being consistent with theoretical predictions, although the consistency would not have been detected with a solely phenotypic analysis. It also provides, to our knowledge, the first evidence of both evolution and phenotypic plasticity contributing to advances in phenology in a changing climate
    corecore