3,420 research outputs found
Significant Conditions on the Two-electron Reduced Density Matrix from the Constructive Solution of N-representability
We recently presented a constructive solution to the N-representability
problem of the two-electron reduced density matrix (2-RDM)---a systematic
approach to constructing complete conditions to ensure that the 2-RDM
represents a realistic N-electron quantum system [D. A. Mazziotti, Phys. Rev.
Lett. 108, 263002 (2012)]. In this paper we provide additional details and
derive further N-representability conditions on the 2-RDM that follow from the
constructive solution. The resulting conditions can be classified into a
hierarchy of constraints, known as the (2,q)-positivity conditions where the q
indicates their derivation from the nonnegativity of q-body operators. In
addition to the known T1 and T2 conditions, we derive a new class of
(2,3)-positivity conditions. We also derive 3 classes of (2,4)-positivity
conditions, 6 classes of (2,5)-positivity conditions, and 24 classes of
(2,6)-positivity conditions. The constraints obtained can be divided into two
general types: (i) lifting conditions, that is conditions which arise from
lifting lower (2,q)-positivity conditions to higher (2,q+1)-positivity
conditions and (ii) pure conditions, that is conditions which cannot be derived
from a simple lifting of the lower conditions. All of the lifting conditions
and the pure (2,q)-positivity conditions for q>3 require tensor decompositions
of the coefficients in the model Hamiltonians. Subsets of the new
N-representability conditions can be employed with the previously known
conditions to achieve polynomially scaling calculations of ground-state
energies and 2-RDMs of many-electron quantum systems even in the presence of
strong electron correlation
Exactly solvable models in 2D semiclassical dilaton gravity and extremal black holes
Previously known exactly solvable models of 2D semiclassical dilaton gravity
admit, in the general case, only non-extreme black holes. It is shown that
there exist exceptional degenerate cases, that can be obtained by some limiting
transitions from the general exact solution, which include, in particular,
extremal and ultraextremal black holes. We also analyze properties of extreme
black holes without demanding exact solvability and show that for such
solutions quantum backreaction forbids the existence of ultraextreme black
holes. The conditions,under which divergencies of quantum stresses in a free
falling frame can disappear, are found. We derive the closed equation with
respect to the metric as a function of the dilaton field that enables one,
choosing the form of the metric, to restore corresponding Lagrangian. It is
demonstrated that exactly solvable models, found earlier, can be extended to
include an electric charge only in two cases: either the dilaton-gravitation
coupling is proportional to the potential term, or the latter vanishes. The
second case leads to the effective potential with a negative amplitude and we
analyze, how this fact affects the structure of spacetime. We also discuss the
role of quantum backreaction in the relationship between extremal horizons and
the branch of solutions with a constant dilaton.Comment: 31 pages. In v.2 typo in Ref. [2] corrected, 4 references added.
Accepted in Class. Quant. Gra
Generalized 2d dilaton gravity with matter fields
We extend the classical integrability of the CGHS model of 2d dilaton gravity
[1] to a larger class of models, allowing the gravitational part of the action
to depend more generally on the dilaton field and, simultaneously, adding
fermion- and U(1)-gauge-fields to the scalar matter. On the other hand we
provide the complete solution of the most general dilaton-dependent 2d gravity
action coupled to chiral fermions. The latter analysis is generalized to a
chiral fermion multiplet with a non-abelian gauge symmetry as well as to the
(anti-)self-dual sector df = *df (df = -*df) of a scalar field f.Comment: 37 pages, Latex; typos and Eqs. (44,45) corrected; paragraph on p.
26, referring to a work of S. Solodukhin, reformulated; references adde
Geometrodynamical Formulation of Two-Dimensional Dilaton Gravity
Two-dimensional matterless dilaton gravity with arbitrary dilatonic potential
can be discussed in a unitary way, both in the Lagrangian and canonical
frameworks, by introducing suitable field redefinitions. The new fields are
directly related to the original spacetime geometry and in the canonical
picture they generalize the well-known geometrodynamical variables used in the
discussion of the Schwarzschild black hole. So the model can be quantized using
the techniques developed for the latter case. The resulting quantum theory
exhibits the Birkhoff theorem at the quantum level.Comment: 15 pages, LATE
Advanced medical life support procedures in vitally compromised children by a helicopter emergency medical service
<p>Abstract</p> <p>Background</p> <p>To determine the advanced life support procedures provided by an Emergency Medical Service (EMS) and a Helicopter Emergency Medical Service (HEMS) for vitally compromised children. Incidence and success rate of several procedures were studied, with a distinction made between procedures restricted to the HEMS-physician and procedures for which the HEMS is more experienced than the EMS.</p> <p>Methods</p> <p>Prospective study of a consecutive group of children examined and treated by the HEMS of the eastern region of the Netherlands. Data regarding type of emergency, physiological parameters, NACA scores, treatment, and 24-hour survival were collected and subsequently analysed.</p> <p>Results</p> <p>Of the 558 children examined and treated by the HEMS on scene, 79% had a NACA score of IV-VII. 65% of the children had one or more advanced life support procedures restricted to the HEMS and 78% of the children had one or more procedures for which the HEMS is more experienced than the EMS. The HEMS intubated 38% of all children, and 23% of the children intubated and ventilated by the EMS needed emergency correction because of potentially lethal complications. The HEMS provided the greater part of intraosseous access, as the EMS paramedics almost exclusively reserved this procedure for children in cardiopulmonary resuscitation. The EMS provided pain management only to children older than four years of age, but a larger group was in need of analgesia upon arrival of the HEMS, and was subsequently treated by the HEMS.</p> <p>Conclusions</p> <p>The Helicopter Emergency Medical Service of the eastern region of the Netherlands brings essential medical expertise in the field not provided by the emergency medical service. The Emergency Medical Service does not provide a significant quantity of procedures obviously needed by the paediatric patient.</p
Entanglement Measures for Single- and Multi-Reference Correlation Effects
Electron correlation effects are essential for an accurate ab initio
description of molecules. A quantitative a priori knowledge of the single- or
multi-reference nature of electronic structures as well as of the dominant
contributions to the correlation energy can facilitate the decision regarding
the optimum quantum chemical method of choice. We propose concepts from quantum
information theory as orbital entanglement measures that allow us to evaluate
the single- and multi-reference character of any molecular structure in a given
orbital basis set. By studying these measures we can detect possible artifacts
of small active spaces.Comment: 14 pages, 4 figure
- …